

New advances in modelling of fibre suspension flow using a pseudo-homogeneous approach

C. Cotas, F. Garcia, P. Faia, D. Asendrych, <u>M.G. Rasteiro*</u> (e-mail: mgr@eq.uc.pt)


COST ACTION FP1005 (7th Joint MC/WG Meeting)

3-5 June 2014, Stockholm, Sweden

- 1. Objectives
- 2. Experimental data
- 3. Geometry
- 4. Previous studies
- 5. LRN turbulence models modifications
- 6. Numerical results
- 7. Viscosity new expression
- 8. Conclusions
- 9. Future work

Development of a mathematical model to describe properly the flow of concentrated fiber suspensions in pipes

- Adapt low-Reynolds k-ε (LRN) turbulence models to take into account the presence of fibers
- Validation of the model

Universidade de Coimbra 2. Experimental data - Flow rig: test section (D=7.62cm, L=4m); magnetic flowmeter; differential pressure meter; temperature control and EIT rings. - Main results: pressure drop, velocity and fiber concentration profile. Flowmeter Thermometer EIT Rings Test Setion **Differential Pressure** Pump Transducer

Figure 1 - Schematic view of the pilot (adapted from Ventura et al (2008) and Faia et al (2012)).

Faia, P.; Silva, R.; Rasteiro, M.; Garcia, F.; Ferreira, A.; Santos, M.; Santos, J.; Coimbra, P. (2012) – "*Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography*" – Particulate Science and Technology, 30(4): 329-342 Ventura, C.; Garcia, F.; Ferreira, P.; Rasteiro, M. (2008) – "*Flow Dynamics of Pulp Fiber suspensions*" – TAPPI Journal, 7(8): 20-26

2. Experimental data

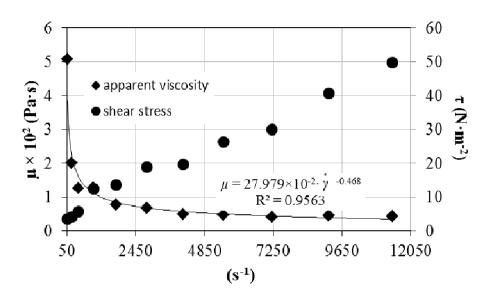
С

Universidade de Coimbra

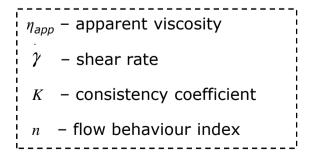
Eucalyptus pulp suspension

- Fiber length = 0.706 mm

- ρ = 998.2 kg·m⁻³


Table 1 – Experimental information.

<i>c</i> [% w/w]	N Crowding factor	Case	<i>U_{in}</i> [m·s⁻¹]	<i>ΔΡ/L_{exp.}</i> [Pa·m ⁻¹]
1.50	1947	A	4.49	829
1.50	1947	В	6.21	1289
2.50	2245	С	4.90	2299
2.50	3245	D	5.55	2814

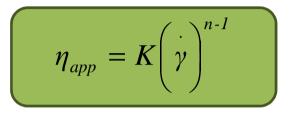

Crowding factor

$$N = \frac{2}{3}c_{v} \left(\frac{L_{fiber}}{D_{fiber}}\right)^{2}$$
- Fiber length, L_{fiber} =0.706mm
- Mean fiber diameter, D_{fiber} =16µm

2. Experimental data

Figure 2 – Rheogram and apparent viscosity for pulp suspension of eucalyptus fibers (c=1.50% w/w).

Table 2- Rheological data for the *Eucalyptus* pulpsuspensions tested.


c (% w/w)	к	n
1.50	0.2798	0.532
2.50	10.721	0.247

Apparent viscosity of the pulp fiber suspension

С

U

Universidade de Coimbra

Universidade de Coimbra 3. Geometry U С r = 0.0381 mLeft Side Right Side L = 1 m7 Inlet Outlet Bottom r Тор F_{in} (kg⋅s⁻¹)

Figure 3 – Geometry and boundaries.

Table 3 – Boundary conditions.

Location	Boundary Condition	
Left Side	Deriodic Poundary	
Right Side	Periodic Boundary	
Bottom	Wall	
Тор	Axis	

The pulp flow is assumed as:

- -Steady state (fully developed flow)
- Isothermal
- Without mass transfer
- Incompressible
- 2D flow with axial symmetry
- non-Newtonian fluid viscosity

> 6 built-in LRN turbulence models were evaluated.

ANSYS FLUENT

Built-in LRN turbulence models to be studied

- Lam-Bremhorst (LB)
- Abe-Kondoh-Nagano (AKN)
- Chang-Hsieh-Chen (CHC)

Lam, C.K.G.; Bremhorst, K. (1981) – "A modified form of the k- ε model for predicting wall turbulence" – Transactions of the ASME, 103(3):456-460 Abe, K.; Kondoh, T.; Nagano, Y. (1994) – "A new turublence model for predicting fluid flow and heat transfer in separating and reattaching flows I: Flow field calculations" – International Journal of Heat and Mass Transfer, 37(1):139-151

Chang, K.C.; Ssieh, W.D.; Chen, C.S: (1995) – "A modified Low-Reynolds-Number turbulence model applicable to recirculating flow in pipe expansion" – Journal of Fluids Engineering, 117(3):417-423

Hsieh, W.D.; Chang, K.C. (1996) – "Calculation of wall heat transfer in pipe-expansion turbulent flows" – International Journal of Heat and Mass Transfer, 39(18):3813-3822

4. Previous studies

General transport equation

$$\frac{1}{r} \left[\frac{\partial}{\partial x} (r\rho u \phi) + \frac{\partial}{\partial r} (r\rho v \phi) \right] = \frac{1}{r} \left[\frac{\partial}{\partial x} \left(r\Gamma_{\phi} \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial r} \left(r\Gamma_{\phi} \frac{\partial \phi}{\partial r} \right) \right] + S_{\phi}$$

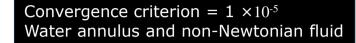
6). Equation	ϕ	Γ_{ϕ}	S_{ϕ}
Continuity [.]	1	0	0
Momentum - axial	21	$\mu_{eff} = \mu + (\mu_t)$	$-\frac{\hat{c}P}{\hat{c}x} + \frac{\hat{c}}{\hat{c}x} \left(\underbrace{\mu_{eff}}_{\hat{c}x} \underbrace{\hat{c}u}_{\hat{c}x} \right) + \frac{1}{r} \frac{\hat{c}}{\hat{c}r} \left(\underbrace{\mu_{eff}}_{\hat{c}x} \underbrace{\hat{c}v}_{\hat{c}x} \right)$
Momentum - radial	v	$\mu_{eff} = \mu + \mu_t$	$-\frac{\hat{c}P}{\hat{c}r} + \frac{\hat{c}}{\hat{c}x} \left(\underbrace{\mu_{eff}}_{\hat{c}r} \frac{\hat{c}u}{\hat{c}r} \right) + \frac{1}{r} \frac{\hat{c}}{\hat{c}r} \left(u_{eff} \frac{\hat{c}v}{\hat{c}r} \right) - 2 \underbrace{\mu_{eff}}_{r^2} \frac{v}{r^2}$
Kinetic energy	k	$\mu + \mu_t / \sigma_k$	$G_k^{} - \rho \varepsilon$
Dissipation rate	Э	$\mu + \mu_t / \sigma_E$	$(C_{\varepsilon 1}f_1)_k - (C_{\varepsilon 2}f_2)_{\varepsilon / k}$

Cartesian coordinates Steady state 2D geometry

Universidade de Coimbra

С

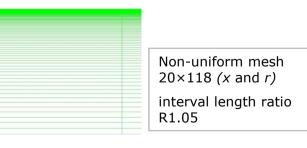
Hsieh, W.D.; Chang, K.C. (1996) – "Calculation of wall heat transfer in pipe-expansion turbulent flows" - International Journal of Heat and Mass Transfer, 39(18):3813-3822


4. Previous studies

Universidade de Coimbra

Table 5 – Damping functions.

Model	f_{μ}	f_{\pm}	f ₂ n
LB	$(1 - exp(-0.0165 Re_k))^2 \times (1 + 20.5 / Re_t)$	$1 + (0.05 / f_{\mu})^3$	$1 - exp\left(-Re_t^2\right)$
AKN	$(1 - exp(-Re_{\varepsilon}/14))^2 \times$	1.0	$(1 - exp(-Re_{\varepsilon}/3.1))^2 \times$
	$\left(1+5\exp\left(-\left(Re_t/200\right)^2\right)/Re_t^{3/4}\right)$	1.0	$\left(1 - 0.3 \exp\left(-\left(Re_t/6.5\right)^2\right)\right)$
СНС	$(1 - exp(-0.0215 Re_k))^2 \times$	1.0	$ \begin{pmatrix} 1 - 0.01 \exp\left(-Re_t^2\right) \end{pmatrix} \times \\ \begin{pmatrix} 1 - \exp\left(-0.0631 Re_k\right) \end{pmatrix} $
	$\frac{\left(1+31.66 / Re_t^{5/4}\right)}{t^{1/2}}$		(*
$Re_t = \frac{k^2}{\varepsilon v}$	$\frac{1}{2}; Re_k = \frac{yk^{1/2}}{v}; Re_{\varepsilon} = \frac{y(\mu\varepsilon/\rho)^{1/4}}{v}$		



С

U

Table 6 – Pressure drop values (Ansys Fluent UDF models).

c [% w/w]	<i>U_{in}</i> [m·s⁻¹]	<i>∆P/L_{exp.}</i> [Pa·m ⁻¹]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]	<i>ΔΡ/L_{num}</i> [Pa·m ⁻¹]	δ [%]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]	Not much		
1.50	4.49	829	1487	79	1605	94	360	57	concentration – still CHC performs slightly		
1.50	6.21	1289	3273	154	3145	144	3356	160	better		
2 50	4.90	2299	2123	35	2178	38	2157	37	CHC performs much		
2.50	5.55	2814	3040	73	2360	35	2335	33	better for higher consistencies		
			L	В	AKN		AKN		Cł	łC	

It was considered a water annulus with thickness equal to fiber length

4. Previous studies

Universidade de Coimbra

- An excellent agreement was found between both the LRN turbulence model implemented with the use of UDF and built-in model results.
- A drag reduction can be observed in all cases when using LRN turbulence models.
- Preliminary results led us to conclude that the models **AB**, **AKN** and **CHC** showed a better fit to the experimental data.
- Models LS and YS did not converge for the higher concentration.
- -Model **LB** showed larger deviations.
- CHC presents, in general, the best results (more notorious for the highest consistencies)

- To improve the numerical results, the model damping function f_{μ} can be modified taking into account the literature for polymer solutions flows or particle suspensions flow.

LRN turbulence models tested and modifications

- Modification of the damping function f_{μ} on the own-developed LB, AKN and CHC turbulence models in Ansys Fluent according the information in literature for polymer solutions flow and particle suspensions flow (uniform concentration distribution of the particles):

Malin polymer solutions

Bartosik particle suspensions flow

$$f_{\mu} = \left[1 - exp\left(-\frac{0.0165 * Re_k}{n^{1/4}}\right)\right]^2 \times \left(1 + \frac{20.5}{Re_t}\right)$$

n – flow behaviour index

$$f_{\mu} = 0.09 \exp\left[-\frac{-3.4\left[1+A_{s}^{3}d^{2}(8-88A_{s} d)c_{v}^{0.5}\right]}{\left(1+\frac{Re_{t}}{50}\right)^{2}}\right]$$

- A_s empirical constant
- c_v volume fraction of solids averaged in cross section
- **d** averaged solid particles diameter

 $Re_t = k^2 / \varepsilon \upsilon$ $Re_k = yk^{1/2} / \upsilon$

- Test different constant values on the new damping functions.

Malin, M.R. (1997) – "*Turbulent pipe flow of power-law fluids"* – International Communications in Heat and Mass Transfer, 24(7):977-988 Bartosik, A. – "*Mathematical modelling of slurry flow with medium solid prticles"* – Mathematical Models and Methods in Modern Science, International Conference Mathematical Models and Methods in Modern Science, Spain, 10-12 December, 2011. ISBN 978-1-6-61804-055-8, pp.124-129.

6. Numerical results

Universidade de Coimbra

New damping function tested

Malin damping function (LB model)

$$f_{\mu} = \left[1 - exp\left(-\frac{C_1 * Re_k}{n^{C_3}}\right)\right]^2 \times \left(1 + \frac{C_2}{Re_t}\right)$$

Table 7 – Different constant values on the Malin's damping function (Cotas et al. (2014a)).

	Case								
	1	2	3	4	5	6	7	8	9
C ₁	0.0165	0.0100	0.0195	0.0165	0.0165	0.0165	0.0165	0.0165	0.0165
<i>C</i> ₂	20.5	20.5	20.5	10.25	30.75	20.5	20.5	20.5	20.5
<i>C</i> ₃	0.25	0.25	0.25	0.25	0.25	1.05	1.125	1.975	2.0
	1	•							

Malin damping function

Preliminary results show that the **LB model modified** with the **Malin's damping function considering different constant values** does **not** induce better predictions (C_1 modification - Cotas et al. (2014b))

Cotas, C.; Garcia, F.; Ferreira, P.; Faia, P.; Asendrych, D. and Rasteiro, M.G. (2014a) – Chang-Hsieh-Chen low-Reynolds *k*-ε turbulence model *Adaptation* to study the flow of concentrated pulp suspensions in pipes – Oral presenteation WCCM XI-ECCM V-ECFD VI, 20-25 July 2014, Barcelona, Spain.

Cotas, C.; Silva, R.; Garcia, F.; Faia, P.; Asendrych, D. and Rasteiro, M.G. (2014b) – Application of different low-Reynolds k- ε turbulence models to model the flow of concentrated pulp suspensions in pipes – Proceedings of The 7th World Congress on Particle Technology (WCPT7), 19-22 May 2014, Beijing, China.

С

Universidade de Coimbra

New damping function tested – Malin (CHC model modified)

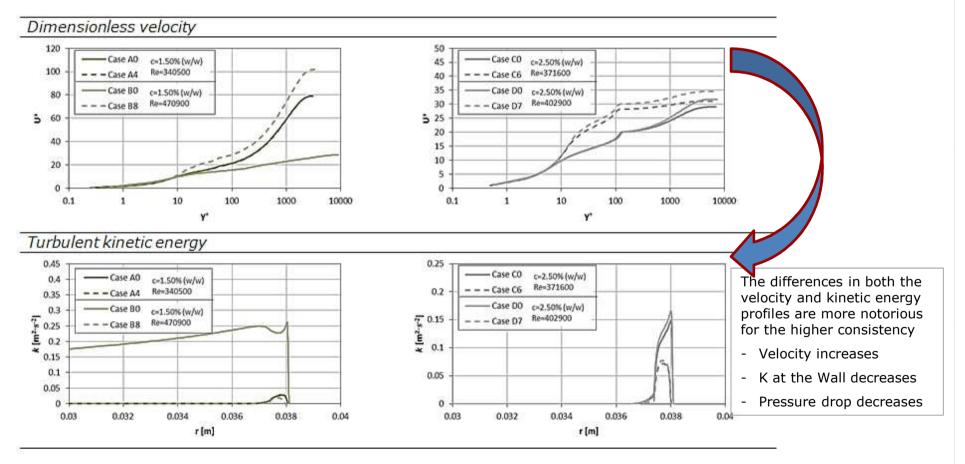
 Table 8 – Numerical pressure drop values – CHC model.

Case	Modification	с [% w/w]	U _ь [m·s⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa∙m ⁻¹]	ΔΡ/L _{num.} [Pa∙m ⁻¹]	δ [%]
A1		1.50	4.49	340501	829	361	57
B1	CHC Malin	1.50	6.21	470937	1289	3332	159
C1	CHC-Malin	2.50	4.90	371593	1579	2152	36
D1		2.50	5.55	402886	1754	2333	33
A4	$C_2 = 10.25$	1.50	4.49	340501	829	361	56
B8	$C_3 = 1.975$	1.50	6.21	470937	1289	420	67
С6	$C_3 = 1.05$	2.50	4.90	371593	1579	1582	0.2
D7	$C_3 = 1.125$	2.50	5.55	402886	1754	1774	1

Constants for the best results.

(in each case the other constants were kept the same as in malin

Good improvement for the high consistency


Similar to CHC

New damping function tested – Malin (CHC model modified)

es 0 - CHC model nout modification

Table 9 – Numerical Results – CHC model.

C • UNIVERSIDADE DE COIMBRA

New damping function tested – Malin (CHC model modified)

- The application of the damping function f_{μ} according to Malin **was not able** to improve the numerical results.
- The numerical results can be improved by modifying the Malin damping function f_{μ} .
- The CHC LRN turbulence model considering the Malin damping function f_{μ} with C_3 modified improves significantly the numerical results.
- The parameter C_3 should be closer but higher than 1.0 when the pulp consistency is equal to 2.50% (w/w).
- The damping function "optimized" reduces significantly the turbulence and the pressure drop is lower than that obtained with the Malin damping function.

С

Universidade de Coimbra

New damping function tested – Malin (AKN model modified)

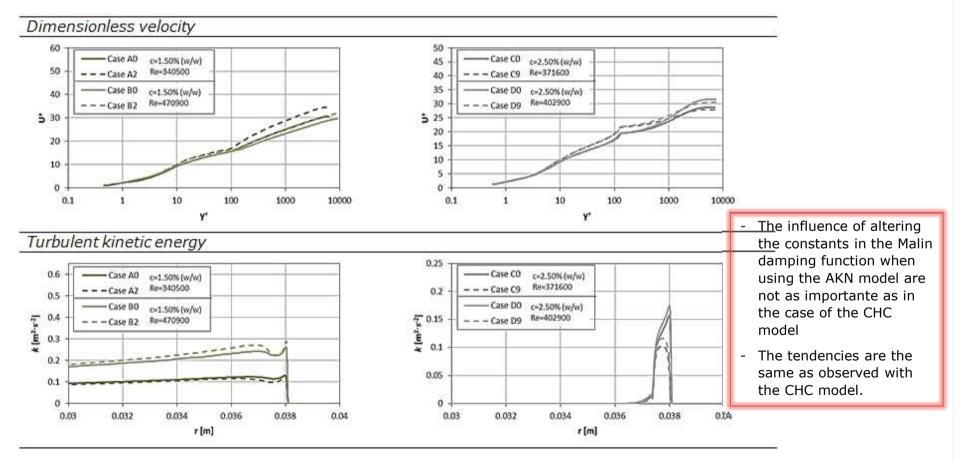
 Table 10 – Numerical pressure drop values – AKN model.

Case	Modification	с [% w/w]	U _b [m·s ⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa·m ⁻¹]	ΔΡ/L _{num.} [Pa·m ⁻¹]	δ [%]
A1		1.50	4.49	340501	829	1698	105
B1	AKNI Malin	1.50	6.21	470937	1289	3240	151
C1	AKN-Malin	2.50	4.90	371593	1579	2205	40
D1	1	2.50	5.55	402886	1754	2380	36
A2	$C_1 = 0.0100$	1.50	4.49	340501	829	1147	38
B2	$C_1 = 0.0100$	1.50	6.21	470937	1289	2821	119
С9	<i>C</i> ₃ = 2.0	2.50	4.90	371593	1579	1986	26
D9	<i>C</i> ₃ = 2.0	2.50	5.55	402886	1754	2190	25

Constants for the best results.

(in each case the other constants were kept the same as in Malin

Slight improvement


Similar to AKN

New damping function tested – Malin (AKN model modified)

es 0 - **AKN** model nout modification

Table 11 - Numerical Results - AKN model.

New damping function tested – Malin (AKN model modified)

- The numerical results were not improved by applying the damping function f_{μ} according to Malin.

- The numerical results, mainly when c=2.50% (w/w), can be improved by modifying the Malin damping function f_{μ} .

- The parameter C_3 should be modified for the higher consistency cases, but for the lower consistency cases the parameter C_1 influences strongly the numerical results.

- The damping function "optimized" has a strong effect on the turbulence.

6. Numerical results

С

Universidade de Coimbra

New damping function tested

Bartosik damping function

$$f_{\mu} = 0.09 \exp\left[-\frac{-3.4\left[1+A_{s}^{3}d^{2}\left(8-88A_{s} d\right)c_{v}^{0.5}\right]}{\left(1+\frac{Re_{t}}{50}\right)^{2}}\right]$$

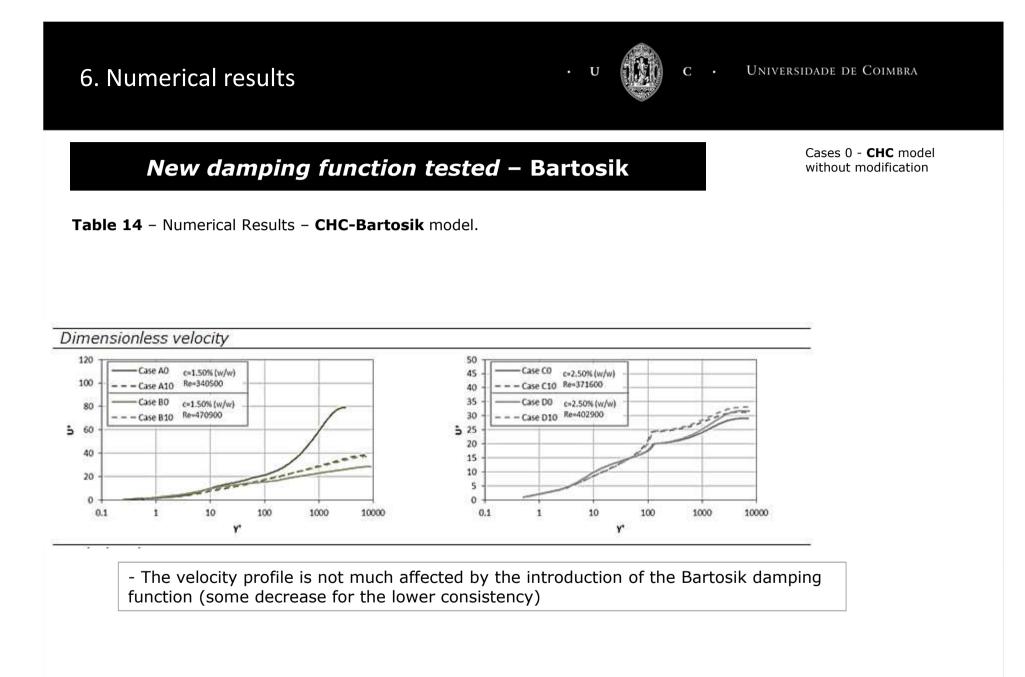
Table 12 – Different parameters on the Bartosik's damping function.

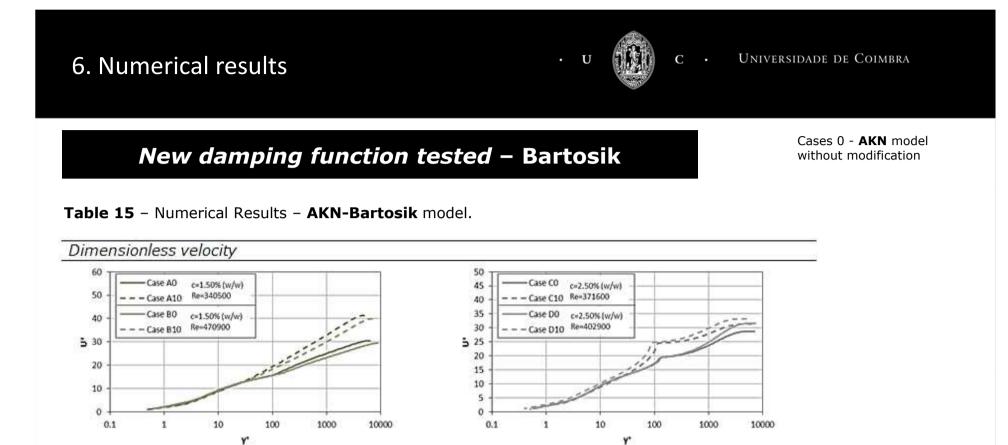
		Case 10			
<i>c</i> [% w/w]	<i>U_{in}</i> [m·s⁻¹]	A _s	d [mm]	C _v	
1.50	4.49		0.016	1.50	
1.50	6.21			1.50	
2 50	4.90	100	0.016	2.50	
2.50	5.55			2.50	

New tests should be performed to test the influence of A_s and *d* (fiber dimensional parameter) on the numerical results.

Good improvement mainly

for the low consistencies


New damping function tested – Bartosik


Table 13 – Numerical pressure drop values.

Case	Modification	c [% w/w]	U _b [m·s ⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa·m ⁻¹]	ΔΡ/L _{num.} [Pa·m ⁻¹]	δ [%]
A10		1.50	4.49	340501	829	1134	37
B10	CHC Partacile	1.50	6.21	470937	1289	1957	52
C10	CHC-Bartosik	2.50	4.90	371593	1579	1966	25
D10		2.50	5.55	402886	1754	2109	20
A10		1.50	4.49	340501	829	1005	21
B10	AKN Partacik	1.50	6.21	470937	1289	1934	50
C10	AKN-Bartosik	2.50	4.90	371593	1579	1957	24
D10		2.50	5.55	402886	1754	2100	20

- The Bartosik damping function f_{μ} has a strong impact on the numerical pressure drop.

- The Bartosik damping function can be modified to get better approaches to the numerical pressure drop, namely, the parameter A_s and modify also d (fiber dimension) to be the fiber aspect-ratio or fiber length.

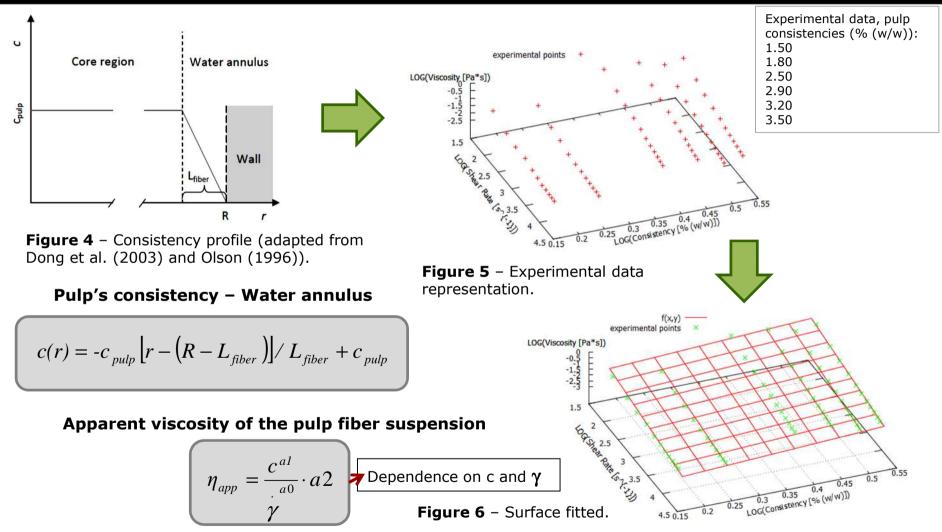
- The velocity profile is not much affected by the introduction of the Bartosik damping function
- Turbulence increases slightly using the Bartosik damping function mainly.
- These trends are in-line with what was observed for the CHC model.

New damping function tested – Bartosik

- The application of the damping function f_{μ} according to Bartosik **was able** to improve the numerical results for all the cases tested.

- The numerical results for the lower consistency cases were improved significantly by modifying the damping function f_{μ} according to Bartosik.

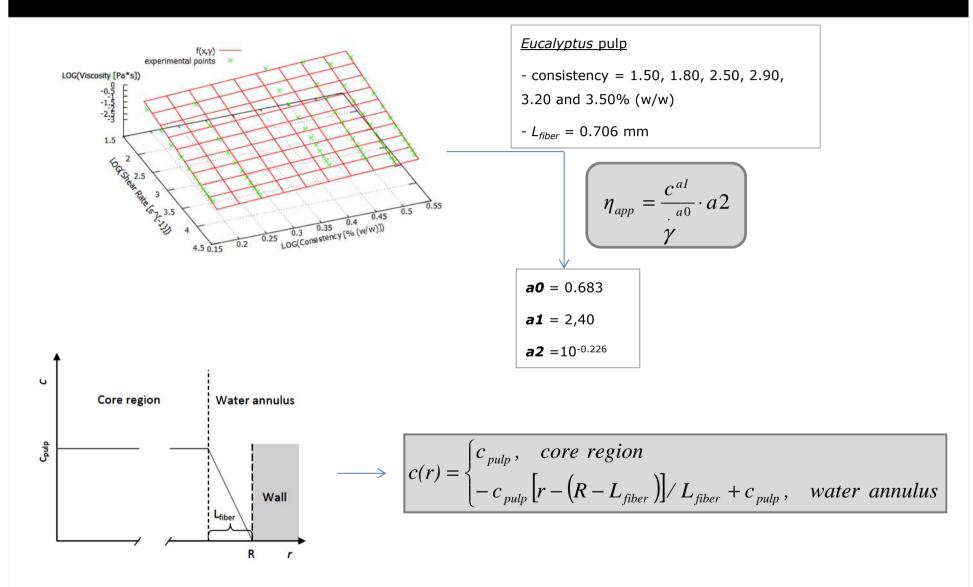
- The damping function slightly modified the **dimensionless velocity profiles**, with the CHC model lower velocities were obtained leading to lower pressure drop values.


- Consider the **Bartosik damping function** on the **AKN** or **CHC** LRN turbulence models leads to **similar values of pressure drop**, t**urbulence** and **dimensionless velocity profiles for the two models**.

7. Viscosity new expression . (dependence on concentration in the water annulus)

С

UNIVERSIDADE DE COIMBRA

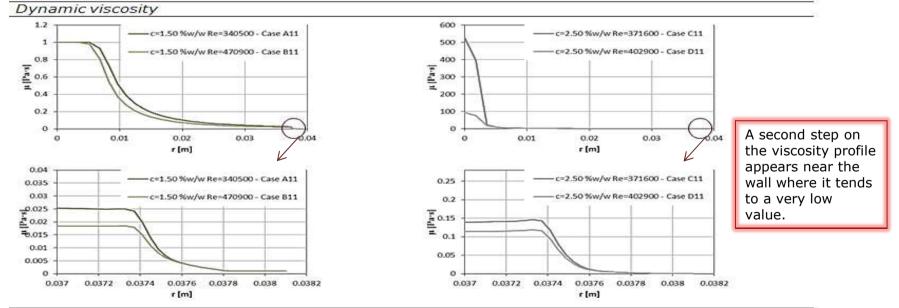

Dong, S.; Feng, X.; Salcudean, M.; Gartshore, I. (2003) – "Concentration of pulp fibers in 3D turbulent channel flow" – International Journal of Multiphase Flow, 29(1):1-21.

Olson, J.S. (1996) – The effect of fiber length on passage through narrow apertures. PhD thesis, University of British Columbia. COST ACTION FP1005 (7th Joint MC/WG Meeting) – 3-5 June 2014, Stockholm, Sweden

7. Viscosity new expression (dependence on concentration in the water annulus)

С

7. Viscosity new expression (dependence on concentration in the water annulus)

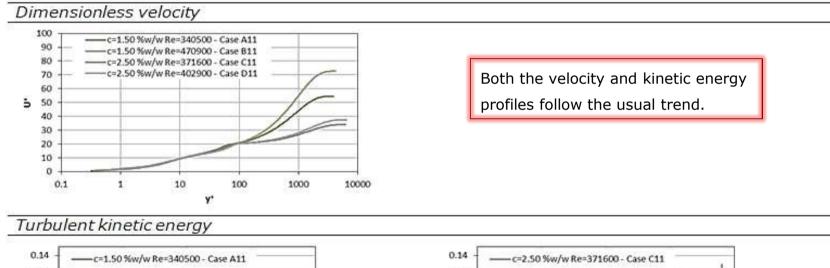

С

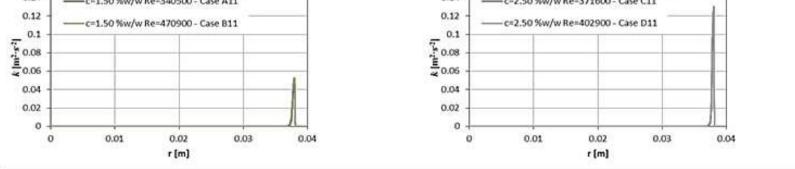
Universidade de Coimbra

Table 16 – Numerica	l pressure drop values	 AKN model.
---------------------	------------------------	--------------------------------

Case	с [% w/w]	U _b [m·s ⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa∙m ⁻¹]	ΔΡ/L _{num.} [Pa·m ⁻¹]	δ [%]	
A11	1.50	4.49	340501	829	567	32	
B11	1.50	6.21	470937	1289	665	48	Good approximation
C11	2.50	4.90	371593	1579	1639	4	mainly for the high consistency
D11	2.50	5.55	402886	1754	1785	2	

Table 17 – Viscosity profiles – AKN model.


7. Viscosity new expression (dependence on concentration in the water annulus)



С

Universidade de Coimbra

Table 18 – Numerical Results – AKN model.

7. Viscosity new expression (dependence on concentration in the water annulus) "

C • UNIVERSIDADE DE COIMBRA

- Consider **the presence of fibers in the water annulus** is **more realistic** from the physical point of view and this can be related with the **better approach to the experimental data**.

- The *drag reduction* effect is reproduced with this **new viscosity expression** and **standard AKN** turbulence model.

- The velocity profiles follow the tendency reported by Jäsberg (2007).

- The **turbulent kinetic energy is strongly reduced near the wall** when comparing with the results considering the standard AKN model and the water viscosity in the water annulus.

Jäsberg, A. (2007) – "Flow Behavior of Fibre suspensions in Straight Pipes: New Experimental Techniques and Multiphase Modeling". PhD Dissertation, Faculty of Mathematics and Science of the University of Jyväskylä, Jyväskylä, Finland

- The **LB**, **AKN** and **CHC** LRN turbulence models can be applied successfully to study the turbulent pipe flow of pulp suspensions.

- These three models can be modified taking into account the cases from literature for the power-law and particles turbulent flow simulation, namely, modifying the damping function f_{μ} .

- **Significant improvement** of the numerical results can be obtained **modifying the Malin damping function**.

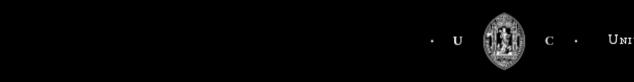
- **Modify** the AKN and CHC LRN turbulence models with the damping function according to **Bartosik** leads to a **better approach** to the experimental results.

- The **near wall effects** are **quite important** for the pulp flow and the turbulence model should deal correctly with them.

- The introduction of the dynamic viscosity as a function of shear rate and fiber consistency and, also, the fiber consistency (in the very thin layer at the pipe wall surrounding the flow core) as a function of pipe radius leads to good predictions of the experimental data.

- The dimensionless velocity profiles are higher for the lower consistency cases and a peculiar S-shaped could be observed.

9. Future work


Universidade de Coimbra

- Study the modification of the Bartosik damping function:
 - different values for the parameter A_s
 - replace *d* by fiber length and fiber aspect ratio
 - test a new damping function considering the yield stress
- Test the new expression for viscosity (function of shear rate and consistency) and the existence of fibers in the water annulus in the CHC and AB LRN turbulence models.
- Analyze the influence of the "water annulus" thickness on the numerical results.
- Modify the AKN and CHC LRN turbulence models new viscosity expression and existence of fibers in the water annulus – with the damping functions of Bartosik and Malin.
- Conduct rheological tests to try to obtain information for lower shear rates.

Thank you for your attention...

(e-mail: mgr@eq.uc.pt)

New advances in modelling of fibre suspension flow using a pseudo-homogeneous approach

COST ACTION FP1005 (7th Joint MC/WG Meeting)

3-5 June 2014, Stockholm, Sweden

