FP1005 MC/WG Meeting, Stockholm, June 3-5, 2014

Numerical modeling of air-fiber flows

Jelena Andrić, Srdjan Sasic, Håkan Nilsson, *Chalmers* Stefan. B. Lindström, *Linköping University*

Industrial application

Absorbent hygiene products (diapers, sanitary napkins)

Fibers transported by flowing air and deposit on forming wheel

Milling machine

Uniform spatial fiber distribution on mat ensures product quality

Present work

Fundamental studies of fiber-flow dynamics

- Rheology of sheared fiber suspensions
- Fiber flocculation in turbulent flow field

Numerical method

Microhydrodynamics approach: Particle-level simulation technique

- Accounting for realistic fiber features: deformability, different shapes
- Inclusion of various forces: fiber-flow, fiber-fiber interactions
- Detailed information about fiber suspension: positions, orientations

Particle-level fiber model

- Chain of rigid cylindrical segments
- Each segment tracked individually LPT
- Segment inertia taken into account
- Flexible and rigid fibers

Schmid et al. (J. Rheol.,2000)

Lindström and Uesaka (Phys. of Fluids, 2007)

Fiber geometry

Chain of rigid cylindrical segments Geometrical properties defined for **each segment**

- diameter
- length
- position vector
- unit direction vectors
- equilibrium shape

Flexible fiber equations of motion

Direct application of Euler's laws for **each fiber segment**

• Linear momentum equation

h: hydrodynamic*X*: connectivity force

 $m_i \ddot{\boldsymbol{r}}_i = \boldsymbol{F}_i^h + \boldsymbol{X}_{i+1} - \boldsymbol{X}_i$

• Angular momentum equation

$$\frac{\partial (\boldsymbol{I}_i \cdot \boldsymbol{\omega}_i)}{\partial t} = \boldsymbol{T}_i^h + \boldsymbol{Y}_{i+1} - \boldsymbol{Y}_i + \frac{l_i}{2}\hat{\boldsymbol{z}}_i \times \boldsymbol{X}_{i+1} + \left(\frac{-l_i}{2}\hat{\boldsymbol{z}}_i\right) \times (-\boldsymbol{X}_i)$$

Y: sum of bending and twisting torques

CHALMERS

Flexible fiber equations of motion (cont.)

• Connectivity constraint - end points of adjacent segments coincide

$$r_{i} + \frac{l_{i}}{2}\hat{z}_{i} = r_{i+1} - \frac{l_{i+1}}{2}\hat{z}_{i+1}$$

• Connectivity equation - time derivative of connectivity constraint

$$\dot{\boldsymbol{r}}_{i+1} - \dot{\boldsymbol{r}}_i = \frac{l_i}{2}\boldsymbol{\omega}_i \times \hat{\boldsymbol{z}}_i + \frac{l_{i+1}}{2}\boldsymbol{\omega}_{i+1} \times \hat{\boldsymbol{z}}_{i+1}$$

Connectivity force linear system

- Time discretization (implicit numerical scheme)
- Dimensionless equations to ensure numerical stability

$$\begin{bmatrix} S_{1,n-1}^{*} & T_{1,n-1}^{*} & 0 & 0 & 0 & 0 \\ Q_{2,n-1}^{*} & S_{2,n-1}^{*} & T_{2,n-1}^{*} & 0 & 0 & 0 \\ 0 & Q_{3,n-1}^{*} & S_{3,n-1}^{*} & T_{3,n-1}^{*} & 0 & 0 \\ 0 & 0 & Q_{4,n-1}^{*} & S_{4,n-1}^{*} & T_{4,n-1}^{*} & 0 \\ 0 & 0 & 0 & Q_{5,n-1}^{*} & S_{5,n-1}^{*} & T_{5,n-1}^{*} \\ 0 & 0 & 0 & 0 & Q_{6,n-1}^{*} & S_{6,n-1}^{*} \end{bmatrix} \cdot \begin{bmatrix} X_{2,n}^{*} \\ X_{3,n}^{*} \\ X_{4,n}^{*} \\ X_{5,n}^{*} \\ X_{6,n}^{*} \\ X_{7,n}^{*} \end{bmatrix} = \begin{bmatrix} V_{2,n-1}^{*} \\ V_{3,n-1}^{*} \\ V_{3,n-1}^{*} \\ V_{4,n-1}^{*} \\ V_{5,n-1}^{*} \\ V_{6,n-1}^{*} \\ V_{7,n-1}^{*} \end{bmatrix}$$

Linear system for connectivity forces for 7-segment fiber

- Solve velocities and angular velocities
- Evolve segment positions and orientations in time

Rigid fiber equations of motion

Formulated for fiber's center of mass (contributions summed over segments)

• Linear momentum equation

$$m\ddot{\vec{r}}_G = \sum_i \vec{F}_i^h$$

• Angular momentum equation

$$\overline{\overline{I}}_{G} \cdot \dot{\overline{\omega}} + \vec{\omega} \times (\overline{\overline{I}}_{G} \cdot \vec{\omega}) = \sum_{i} \{ \overline{T}_{i}^{h} + \overline{r}_{Gi} \times \overline{F}_{i}^{h} \}$$

- Solve translational velocities and angular velocity
- Evolve segment positions and orientations in time

Rheology of sheared fiber suspensions

Understanding suspension structure

• Process optimization, product quality

Rigid, straight fibers

- Batchelor's theory known fiber orientation
- Semi-dilute suspensions; hydrodynamic interactions

Flexible fibers, fibers with irregular equilibrium shapes

- No theoretical studies
- Few numerical studies based on Batchelor's theory

 $\sqrt{-\frac{1}{2d}T_i^h \times \hat{\xi}_i}$

 $-T_i^h$

Rheology of sheared fiber suspensions: Direct method for deviatoric stress computation

- Dipole strength of single fiber
- Hydrodynamic forces and torques as localized tractions

$$s' = \iint_{i=1}^{N} [\tau r - \frac{1}{3} (r \cdot \tau) \delta] dA$$

$$= \sum_{i=1}^{N} [F_i^h r_i + \frac{1}{2} \epsilon \cdot T_i^h - \frac{1}{3} (r_i \cdot F_i^h) \delta]$$

$$\frac{1}{2d} T_i^h \times \hat{\eta}_i$$

- Flexible fibers
- Fibers with irregular equilibrium shapes

Rheology of sheared fiber suspensions: Dipole strength validation

Isolated, straight, rigid fiber – agreement with Batchelor's theory

Rheology of sheared fiber suspensions: Numerical experiments

- Ergodicity assumption; Fibers initially in flow-gradient plane
- Initially straight fibers S-shape deformations

Time–series of images from simulation for different bending ratio: a) BR=1, b) BR=0.02, c) BR=0.0016.

Rheology of sheared fiber suspensions: Effects of fiber flexibility

Relation between fiber bending ratio *BR* and first normal stress difference N_1^*

• Increases with fiber flexibility (lower BR values)

Rheology of sheared fiber suspensions:

Effects of fiber flexibility Relation between fiber bending ratio *BR* and specific viscosity (SV) η_{sp}^{*}

0.03 Ο 0.02⁺ ^{ds}ل Batchelor's expression ò õ õ õ * **** * Proposed method × 0.01 0 10⁻³ 10⁻² 10^{-1} 10⁰ 10^{1} BR

• Batchelor's theory: SV increases with fiber flexibility

- Observed by other studies (Joung et al., J. Non-Newtonian Fluid Mech., 2001)
- Proposed method: SV decreases with fiber flexibility
 - Reason: reduced viscous dissipation

Fiber flocculation in realistic flow fields

Geometries and flow conditions representative for industrial process

- Asymmetric planar diffuser
- High Reynolds number flow
- Non-creeping fiber-flow interactions

Fiber properties consistent with those of hardwood fibers

• Diameter, length, density

Fiber flocculation in realistic flow fields

- Dilute suspension of rigid, straight fibers
- Turbulent dispersion stochastic model
- Short-range attractive forces fibers interlock in flocs

Fibers and fiber flocs – steady state solution **Top:** all fibers; **Bottom:** fibers in flocs

With Random Walk

Without Random Walk

CHALMERS

Fiber flocculation in realistic flow fields

Variation of flock mass fraction ϕ_2 along diffuser

Darting fiber motion \rightarrow enhances collisions \rightarrow increase in flocculation rate

Conclusions

- Rheology of flexible fiber suspensions
 - Viscosity decreases with fiber flexibility
 - Important to properly account for fiber deformability
 - Experimentalíst characterize fiber morphology

- Flocculation of rigid, straight fibers in turbulent flow
 - Darting fiber motion enhances collisions and flocculation rate

FP1005 MC/WG Meeting, Stockholm, June 3-5, 2014

Thank you!

Financially supported by Bo Rydin Foundation and SCA Hygiene Products AB

