

Flow of NFC suspensions in Couette device-MRI invetigations

S. Skali Lami, S. Leclerc, D. Stemmlen Lorraine University (LEMTA - Nancy)

C. Quezennec, D. Guerrin (CTP Grenoble)

Introduction

- M/NFC generality
- Rheology of NFC
- IRM and experimental device
- Preliminary results
- Theoretical approach
- Conclusions and perspectives

Generality

Nutrition Resources: Carbohydrates, <u>http://nutrition.jbpub.com/resources/chemistryreview9.cfm</u>, Jones and Bartlett Publishers (june 2012).

Dufresne A., Cavaillé J.Y., Vignon M.R., "Mechanical Behavior of sheets prepared from sugar beet cellulose microfibrils," *Journal of Applied Polymer Science* 64, no. 6 (1997): 1185-1194.

Da Silva Perez D., Tapin-Lingua S., Janodet A., Petit-Conil M., Dufresne A., "Nanofibres: Production of cellulose micro and nano-fibres: state of the art and first results", 5th Intechfibres Research Forum: Centre technique du Papier, Grenoble (2009).

Generality

TEM picture of highly diluted dispersion of NFC/MFC Source CTP

Rheology	of	NFC,
M.Pääkkö	et	al.,
Biomacromolecules		8(6),
1934-1941, 2007		

Rheology

Rheometer AR 2000

Rheology

Rheology

Theoretical approach

This Study concern the Case of viscometric flow

NFC suspension

R. Masoodi, and all (2012), Mechanical characterization of cellulose nanofiber and bio-based epoxy composite, Materials & Design, Volume 36, April 2012, Pages 570-576 Elasticity G_1 -> coherence Length \mathcal{E}_1

Exclude volume -> δ/h Flow Free water

Elasticity $G_2 \rightarrow$ coherence Length \mathcal{E}_2

Hypothesis the gel is formed by two scale of elasticity

Theoretical approach

Theoretical approach by mean shear stress

Double elasticity of network

Results

Test section

R_{int}=2cm R_{ext}=5cm

Biospec 24/40 Bruker 100MHz

Test section

- Couette flow at large gap)
- IRM investigation (Velocity profile measurement)

Preliminary results - water test

COST FP1005 "Fibre Suspension Flow Modelling"- ERCOFTAC SIG43 "Fibre suspension flows". 15 Coimbra – March 2013

"Fibre suspension flows". Coimbra – March 2013

Principal conclusions and future

- Rheology of NFC -> heterogeneity Consider the confinement Rheology measurement under vibrations
- IRM preliminary investigations -> promising results Investigation of different concentrations To check $G \approx C^{9/4}$
- Theoretical approach -> good predictions
 Time dependent

Future

Suspensions of vibrated fibers (S. Kiesgen, S. Skali Lami, P. Marchal)

Coimbra – March 2013

THANK YOU FOR YOUR ATTENTION