A comparitive investigation of MRI and UVP measurement of fibre suspension flow

Paul Krochak, Masato Harato, Richard Holm, Fredrik Lundell

paul.krochak@innventia.com

Fibre Suspension Flows

Basic flow regimes in papermaking

- 1. Plug:
 - Interconnected fibre network
 - Thin water layer near walls
- 2. Mixed
 - Unstable wall layer
 - Turbulent Annulus
 - Plug begins to break up
- 3. Turbulent
 - Flow is fully turbulent

- Plug is fluidized and breaks apart
- Highly dependent on concentration, stock contents, and flow speed

2013-03-09

Literature & Current Knowledge

- Sedimentation
- Fluidized bed reactors.
- Near wall slip velocity (suspension wall)
- Pressure driven flows?

Concentration Regimes

- Fibre type: Rayon
- Average fiber length, L = 2 mm
- Average fiber diameter, d = 60 μm
- Fiber aspect ratio, r = L/d = 33

$nL^3 \le 1$ Dilute $1 \le nL^3 \le r$ Semi-dilute $nL^3 \ge r$ Concentrated

Particle Velocity Measurement: Ultrasonic Velocimetry Profiling (UVP)

Water Velocity: Magnetic Resonance Imaging (MRI)

Comparison of Flow Images

UVP

The Orignal Flow Loop

The Rebuilt Flow Loop

Previous results and mistakes..... But still rather interesting

MRI measurements

Effect of Elbow on Flow with Pulp Fibres

 $nL^3 = 20, v \sim 0.55 m/s$

14

New Results – Flow symmetry

Effect of fibres on water velocity

2013-03-09

Conclusions / Questions

- Q. Does the flow asymmetry lead to a slip velocity?
- Q. Does a slip velocity exist in pressure driven flow and what are the conditions for this to occur?
- Q. What is causing the MRI measurements to degrade near the walls at high flow / high concentration?
- C. MRI and UVP agree extremely well with each other -> reliable measurement techniques (WG1 goal is/has been to prove this)
- C. Fibre velocity = fluid velocity in the fibre/concentration/velocity ranges studied here

Thank you!

2013-03-09