

Universidade de Coimera

Numerical Simulation of the Flow of Fiber Suspensions in Pipe with Modified Velocity Profiles

C. Cotas*, F. Garcia, P. Ferreira, P. Faia, D. Asendrych and M.G. Rasteiro

COST ACTION FP1005 (5th ERCOFTAC SIG43 Workshop)

6-8 March 2013, Coimbra, Portugal

C

Universidade de Coimera

- 1. Objectives
- 2. Pseudo-homogeneous Approach
- 3. Modified Velocity Profiles
- 4. Numerical Results
- 5. Future Work

Development of a mathematical model to describe properly the flow of fiber suspensions in pipes

- Modeling of pipe fiber suspensions flow
- Characterization of the pulp fiber rheology
- Adapt the standard k-ɛ turbulence model to take into account the presence of fibers
- Validation of the model

Computational Strategies

- Pseudo-homogeneous model
- Mass conservation equation and equations of motion
- Standard k-ε turbulence model
- Eucalyptus, Pine and Recycled fiber suspension
- Adapt the CFD code to take into account the presence of fibers in the flow

ANSYS FLUENT

Experimental Results

- Flow rig: test section (D=7.62cm, L=4m); magnetic flowmeter; differential pressure meter; temperature control and EIT rings.
- Main results: pressure drop, fibers distribution (fiber plug evolution) and velocity profiles.

Figure 2 - Schematic view of the pilot rig existent in DEQ-FCTUC (adapted from Ventura *et al* (2008) and Faia *et al* (2012)).

Figure 1 - Pilot rig existent in DEQ-FCTUC (adapted from Rasteiro (2011)).

COST ACTION FP1005 (5th ERCOFTAC SIG43 Workshop) – 6-8 March 2013, Coimbra, Portugal

 \mathbf{C}

UNIVERSIDADE DE COIMBRA

Approximation according to Jäsberg (2007)

Figure 9 - Piecewise logarithmic approximation of measured velocity profiles according to Jäsberg (2007).

 y_L^+ - dimensionless distance between the near wall region and the yield region

 y_C^+ - position of the **plug surface** (region between the high flow rate envelope curve and the upper limit of the yield region)

 y_H^+ - dimensionless distance between the yield and core region

α - indicator of the slope in relation to
 Newtonian profile of the envelope curve in the
 yield region

 β - indicator of the slope in relation to Newtonian profile of the envelope curve in core region

 \mathbf{C}

Universidade de Coimbra

Approximation according to Jäsberg (2007)

$$u^{+} = \frac{1}{k} ln(y^{+}) + B + \Delta u^{+}$$
(1)

$$\Delta u^{+} = \begin{cases} 0, \quad 0 < y^{+} \le y_{L}^{+} & \longrightarrow \text{ Near wall region} \\ \frac{\alpha}{k} ln \left(\frac{y^{+}}{y_{L}^{+}} \right), \quad y_{L}^{+} < y^{+} \le y_{C}^{+} \left(\le y_{H}^{+} \right) & \longrightarrow \text{ Yield region} \end{cases}$$
(2)
$$\Delta u_{C}^{+} - \frac{\beta}{k} ln \left(\frac{y^{+}}{y_{C}^{+}} \right), \quad y_{C}^{+} < y^{+} \le R^{+} & \longrightarrow \text{ Core region} \end{cases}$$

$$\Delta u_{c}^{+} = \frac{\alpha}{k} ln \left(\frac{y_{c}^{+}}{y_{L}^{+}} \right)$$
(3)

4. Numerical Results

Universidade de Coimbra

Wall law modification and non-Newtonian fluid

Case study

Turbulent water flow in pipe

- $U_{in} = 4.21 \text{ m} \cdot \text{s}^{-1} \Delta P / L(\text{literature}) = 1675.7 \text{ Pa} \cdot \text{m}^{-1}$
- $U_{in} = 6.21 \text{ m} \cdot \text{s}^{-1} \Delta P / L(\text{literature}) = 3419.8 \text{ Pa} \cdot \text{m}^{-1}$
- $\rho = 998.2 \text{ kg} \cdot \text{m}^{-3}$
- $\mu = 1.002 \times 10^{-3} \text{ Pa} \cdot \text{s}$

Table 1 – Parameters for 1% Pine and 2% Birch fiber suspensions (Jäsberg 2007).

Parameter	Pine 1%	Birch 2%
y_L^+	120	50
y_{H}^{+}	880	320
α	1.8	2.4
u_C^* [m·s ⁻¹]	0.0047	0.0125

Eucalyptus fiber suspension flow in pipe

- $U_{in} = 4.21 \text{ m} \cdot \text{s}^{-1} \Delta P / L_{(experimental)} = 788.7 \text{ Pa} \cdot \text{m}^{-1}$
- $U_{in} = 6.21 \text{ m} \cdot \text{s}^{-1} \Delta P / L_{(experimental)} = 1288.7 \text{ Pa} \cdot \text{m}^{-1}$
- c = 1.50 % (w/w)
- $\mu = \begin{cases} 1.003 \times 10^{-3} & \text{water annulus} \\ \vdots & 0.468 \\ 0.2798 \cdot \gamma & \text{plug region} \end{cases}$ • Fiber length = 0.706 mm• $\rho = 998.2 \text{ kg} \cdot \text{m}^{-3}$

Universidade de Coimbra

Wall law modification and non-Newtonian fluid

Table 2 – Pressure drop values – viscosityequal to water viscosity.

Case	α	β	yı,*	yc+	$\Delta P/L_{literature}$ (Pa·m ⁻¹)	$\Delta P/L_{numerical}$ (Pa·m ⁻¹)		
U _{in} = 4.21 m·s ⁻¹								
1	2.4	0	50	320	1675.7	1114.4		
2	4.4	0	100	320		1616.1		
3	2.4	0	50	320	1675.7	1114.4		
4	4.4	0.5	100	320	10/5./	1616.2		
Uin = 6.21 m·s ⁻¹								
5	2.4	0	50	320	3419.8	2042.0		
6	4.4	0	100	320		3393.0		
7	2.4	0	50	320	3419.8	2042.0		
8	4.4	0.5	100	320		3275.8		

Table 3 – Pressure drop values – viscosity
as a function of local shear rate
considering a water annulus.

С

Case	α	β	yı.*	yc*	$\Delta P/L_{experimental}$ (Pa·m ⁻¹)	$\Delta P/L_{numerical}$ (Pa·m ^{·1})		
Un = 4.21 m·s·1								
9	2.4	0	50	320	788.7	1205.5		
10	4.4	0	100	320		1740.5		
11	2.4	0	50	320	788.7	1205.5		
12	4.4	0.5	100	320		1740.5		
Uin = 6.21 m·s ⁻¹								
13	2.4	0	50	320	1288.7	2146.9		
14	4.4	0	100	320		3384.8		
15	2.4	0	50	320	1288.7	2146.9		
16	4.4	0.5	100	320		3425.3		

Wall law modification and non-Newtonian fluid

- The pressure drop is influenced by the slope in the yield region and the thickness of the near wall region.
- The slope in the core region doesn't influence the numerical results.
- When the mean inlet velocity increases, the numerical pressure drop increases as well.
- In all the cases tested we could reproduce a drag reduction effect.
- The turbulence parameters of Jäsberg for the Birch case are more adequate for the Eucalyptus pipe flow.

U D

С

Wall law modification and non-Newtonian fluid

U D

С

Wall law modification and non-Newtonian fluid

Model modification

- Standard Log-Law
- – Jasberg Log_Law

4. Numerical Results

 \mathbf{C}

Wall law modification and non-Newtonian fluid

Figure 10 – Residuals for the **case 1/3** – viscosity equal to **water viscosity**.

Figure 11 – Residuals for the **case 9/11** viscosity as a function of **local shear rate** considering a **water annulus**.

Wall law modification and non-Newtonian fluid

- The U⁺ profiles are closer to the expected when the turbulence parameters are equal to Jäsberg for the Birch case.
- The increase of the mean inlet velocity leads to a better approximation to the U + profile expected.
- The modification in the Jäsberg model parameters tested approximates the velocity profile to the Newtonian one.
- When the suspension viscosity is used the maximum velocity decreases, as expected.

5. Future Work

- Test further the influence of Jäsberg adjustable parameters on pressure drop and velocity profiles for different fiber suspensions.
- Test a new expression to modify the velocity profiles based in the studies of Shen and Lin (2010):

$$u^{+} = \frac{1}{k} \ln(y^{+}) + B + w \left(\frac{y}{0.5b}\right) + C \qquad w \left(\frac{y}{0.5b}\right) = \frac{2\Pi}{k} \sin^{2} \left(\frac{\pi}{2} \frac{y}{r_{0}} \frac{1}{0.6}\right)$$

Constants: C = f(Re, c, r) $\Pi = f(\text{Re}, c, r)$

- Change the turbulence model by the adjustment of the turbulence parameters (turbulence length scale and turbulence intensity scale) to include the presence of fibers in the flow.
- Use the CFD model to simulate the pulp flow for different fiber types, flow rates and consistencies.

С

U

Universidade de Coimbra

Thank you for your attention...

Universidade de Coimera

Numerical Simulation of the Flow of Fiber Suspensions in Pipe with Modified Velocity Profiles

COST ACTION FP1005 (5th ERCOFTAC SIG43 Workshop)

6-8 March 2013, Coimbra, Portugal

 \mathbf{C}

U

Approximation according to Jäsberg (2007)

$$u^{+} = \frac{1}{k} ln(y^{+}) + B + \Delta u^{+}$$
(1)

$$\Delta u^{+} = \begin{cases} 0, & 0 < y^{+} \le y_{L}^{+} \\ \frac{\alpha}{k} ln \left(\frac{y^{+}}{y_{L}^{+}} \right), & y_{L}^{+} < y^{+} \le y_{C}^{+} \left(\le y_{H}^{+} \right) \\ \Delta u_{C}^{+} - \frac{\beta}{k} ln \left(\frac{y^{+}}{y_{C}^{+}} \right), & y_{C}^{+} < y^{+} \le R^{+} \end{cases}$$
(2)

$$u^{+} = \frac{u_{p}}{\sqrt{\frac{\tau_{W}}{\rho}}} \qquad \qquad y^{+} = y \frac{u^{*}}{\upsilon_{f}} \qquad \qquad u^{*} = \sqrt{\frac{\tau_{W}}{\rho_{f}}} \qquad \qquad R^{+} = R \frac{u^{*}}{\upsilon_{f}}$$

С

Non-Newtonian viscosity and water annulus

Figure 12 – Domain tested considering the water annulus and the mesh refinement in a zone near the wall.

(4)