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KTH Mechanics

Fluid inertia correction of Jeffery
torques for a single spheroid
In linear shear flow
at low particle Reynolds number

Tomas Rosén and Fredrik Lundell

Big thanks to Dr. Arne Nordmark
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Motivation

Ref: Wikipedia - Turbulence Ref: Motif
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Governing equations and definitions

Fluid motion:
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Jeffery's orbits

G. B. Jeffery, Proc. R. Soc. London, Ser A 102 (1922)

Assumptions: Particle is massless and infinitely small (compared to fluid length scales)
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Analytical solution for torque Analytical solution for particle
angular velocity

Tumbling Kayaking




) - Ju) =—Vp+ Vu g -"

alytical solution for torque Analytical solution for pa
anqgular velocity

10,|

A0 e g
10 >
0 el 0

10 10
¥ y

Tumbling Kayaking Log-rolling




Motivation | Flow problem [EREEEYIVERIeIEx Method Results Issues Conclusions

Jeffery's orbits

G. B. Jeffery, Proc. R. Soc. London, Ser A 102 (1922)

Assumptions: Particle is massless and infinitely small (compared to fluid length scales)

V-u=10 .
: S «l@

Analytical solution for torque Analytical solution for particle
angular velocity

Tumbling Kayaking




Motivation | Flow problem [EREEEVIeIVERIYe]4x Method Results Issues Conclusions

O @) 000 @) O

Lundell & Carlsson approach

F. Lundell and A. Carlsson, Phys. Rev. E 81 (2010)
Assumptions: Particle is small compared to fluid length scales, but particle inertia relevant
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Analytical solution for torque Analytical solution for particle
angular acceleration

Orbit drift Validity of assumption

Particle inertia

Particle+fluid inertia

Particle inertia leads to a drift towards Tumbling

Particle inertia seems to be the only reason for orbit drift
at low particle Reynolds numbers




Orbit drift

St=1000
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Orbit drift

St=10 St=100 St=1000
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Validity of assumption

0.1 — ———— Particle inertia
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FIG. 8. (Color online) Orbit drift parameter ¢’ as a function of

St for the present case without fluid inertia (blue, *) and from
simulations including fluid and particle inertia with k=1.001 by Yu

et al. [24] (red, O). k,=k,=0.5.

Particle inertia seems to be the only reason for orbit drift
at low particle Reynolds numbers
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Lundell & Carlsson approach

F. Lundell and A. Carlsson, Phys. Rev. E 81 (2010)
Assumptions: Particle is small compared to fluid length scales, but particle inertia relevant
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Rosén et al. approach

T. Rosén et al., J. Fluid Mech. 738 (2014)

Simulations of neutrally buoyant prolate spheroids using the lattice Boltzmann method with
external boundary force (LB-EBF) [1]
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Primary effect of fluid inertia = Orbit drift to Log-rolling

Low Reynolds number = Orbit drift to Tumbling

v

Low Reynolds number = Particle inertia dominates

Very computationally expensive method

[1] J. Wu and C. K. Aidun, Int. J. Numer. Meth. Fluids 62 (2010)
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Present method

Stability analysis of Log-rolling spheroid in Comsol Multiphysics [1]

- Fixed but deformable grid

- Velocity boundary condition on particle
surface

- Coupled motion of particle and fluid

- Step 1: Solve the stationary flow
problem
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L related to Orbit drift

| ||
WT ‘I |U‘H ”

x-comp. of sym. axis

‘200 —IUU {JUU

Gt

[1] Model built by Dr. Arne Nordmark
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Effect of fluid inertia
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- Neutrally buoyant particles:
- Fluid inertia dominates over particle inertia

- Low particle Reynolds number:
- Fluid inertia and particle inertia both act in the same direction
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Effect of fluid inertia
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Effect of fluid inertia
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Scaling of Stokes number

« _ Pr -k K = 9/4 (prolate)
St= 2, et Ko Rey 53116 (oblate)

(Suggested scaling)
Re = 0.5,

(DNS, Comsol) v
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(DNS, Comsol)
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Meaning of scaling

Added mass:

Py ) Hw 4w x (I-w)] =T jeffery

7

Correction to Jeffery torques:

St-Iw+wx (I-w)] =Tjeffery — K-Rep-1) - [Tw+w x (I-w)]
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Issues: Generality

Tumbling —1.0
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Not able to capture full orbit drift
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Conclusions

- Fluid inertia domination at low particle Reynolds numbers
as long as particle is close to neutrally buoyant.
Matching Stokes number is not the answer.

- Fluid inertia acts in same direction as particle inertia.
Scaling the Stokes number might be the answer.

- Work still to be done. A constant Stokes scaling is still not
enough to capture the full orbit drift with fluid inertia.

- Solutions consistent with previous DNS results, but not
consistent with certain theoretical works, e.g.
Subramanian & Koch, JFM 557 (2006)
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