Thank you!

Fluid inertia correction of Jeffery torques for a single spheroid in linear shear flow at low particle Reynolds number

Tomas Rosén and Fredrik Lundell

Big thanks to Dr. Arne Nordmark

MotivationFlow problemPrevious workMethodResultsIssuesConclusionsOOOOOO

Motivation

00

 $\overline{\circ}$

Governing equations and definitions

000

000

Oblate spheroid

Fluid motion:

$$\nabla \cdot \boldsymbol{u} = 0$$

$$Re_p \cdot \left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \right) = -\nabla p + \nabla^2 \boldsymbol{u}$$

Particle motion:

$$St \cdot \frac{\partial \wp}{\partial t} = \mathbf{F}$$

$$St \cdot \left(\mathbf{I} \cdot \frac{\partial \omega}{\partial t} + \omega \times (\mathbf{I} \cdot \omega) \right) = \mathbf{T}$$

Reynolds number:

$$Re_p = \frac{Gl_{major}^2}{\nu}$$

Aspect ratio:

$$r_p = \frac{l_{sym}}{l_{eq}}$$

Stokes number:

$$St = \frac{\rho_p}{\rho_f} \cdot Re_p$$

Alt. aspect ratio:

$$r_p^* = \frac{l_{major}}{l_{minor}}$$

Jeffery's orbits

G. B. Jeffery, Proc. R. Soc. London, Ser A 102 (1922)

Assumptions: Particle is massless and infinitely small (compared to fluid length scales)

$$Re_{p} \cdot (\partial \boldsymbol{u}) = -\nabla p + \nabla^{2} \boldsymbol{u}$$

$$Re_{p} \cdot (\partial \boldsymbol{v}) = -\nabla p + \nabla^{2} \boldsymbol{u}$$

$$St \cdot \left(\boldsymbol{I} \cdot \frac{\partial \boldsymbol{J}}{\partial t} \right) = \boldsymbol{T}$$

Analytical solution for torque

Analytical solution for particle angular velocity

$$(\boldsymbol{u}) \cdot (\boldsymbol{v}) \cdot (\boldsymbol{u}) = -\nabla p + \nabla^2 \boldsymbol{u}$$

alytical solution for torque

Analytical solution for pa angular velocity

Tumbling

Kayaking

Log-rolling

Jeffery's orbits

G. B. Jeffery, Proc. R. Soc. London, Ser A 102 (1922)

Assumptions: Particle is massless and infinitely small (compared to fluid length scales)

$$Re_{p} \cdot (\partial \boldsymbol{u}) = -\nabla p + \nabla^{2} \boldsymbol{u}$$

$$Re_{p} \cdot (\partial \boldsymbol{v}) = -\nabla p + \nabla^{2} \boldsymbol{u}$$

$$St \cdot \left(\boldsymbol{I} \cdot \frac{\partial \boldsymbol{J}}{\partial t} \right) = \boldsymbol{T}$$

Analytical solution for torque

Analytical solution for particle angular velocity

Lundell & Carlsson approach

F. Lundell and A. Carlsson, Phys. Rev. E 81 (2010)

Assumptions: Particle is small compared to fluid length scales, but particle inertia relevant

$$\nabla \cdot \boldsymbol{u} = 0$$

$$Re_p \cdot \left(\partial \boldsymbol{u} - \nabla \right) \boldsymbol{u} \right) = -\nabla p + \nabla^2 \boldsymbol{u}$$

$$St \cdot \left(\boldsymbol{I} \cdot \frac{\partial \boldsymbol{\omega}}{\partial t} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega}) \right) = \boldsymbol{T}$$

Analytical solution for torque

Orbit drift SE-10 SE-

Analytical solution for particle angular acceleration

Orbit drift

Particle inertia leads to a drift towards Tumbling

Orbit drift

Particle inertia leads to a drift towards Tumbling

Validity of assumption

FIG. 8. (Color online) Orbit drift parameter c' as a function of St for the present case without fluid inertia (blue, *) and from simulations including fluid and particle inertia with $\kappa=1.001$ by Yu et al. [24] (red, \bigcirc). $k_b=k_c=0.5$.

Particle inertia seems to be the only reason for orbit drift at low particle Reynolds numbers

Lundell & Carlsson approach

F. Lundell and A. Carlsson, Phys. Rev. E 81 (2010)

Assumptions: Particle is small compared to fluid length scales, but particle inertia relevant

$$\nabla \cdot \boldsymbol{u} = 0$$

$$Re_p \cdot \left(\partial \boldsymbol{u} - \nabla \right) \boldsymbol{u} \right) = -\nabla p + \nabla^2 \boldsymbol{u}$$

$$St \cdot \left(\boldsymbol{I} \cdot \frac{\partial \boldsymbol{\omega}}{\partial t} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega}) \right) = \boldsymbol{T}$$

Analytical solution for torque

Orbit drift SE-10 SE-

Analytical solution for particle angular acceleration

Rosén et al. approach

T. Rosén et al., J. Fluid Mech. 738 (2014)

Simulations of neutrally buoyant prolate spheroids using the lattice Boltzmann method with external boundary force (LB-EBF) [1]

$$\nabla \cdot \boldsymbol{u} = 0$$

$$Re_p \cdot \left(\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}\right) = -\nabla p + \nabla^2 \boldsymbol{u}$$

$$St \cdot \left(\boldsymbol{I} \cdot \frac{\partial \boldsymbol{\omega}}{\partial t} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega}) \right) = \boldsymbol{T}$$

Primary effect of fluid inertia = Orbit drift to Log-rolling

Low Reynolds number = Orbit drift to Tumbling

Low Reynolds number = Particle inertia dominates

Very computationally expensive method

Present method

Stability analysis of Log-rolling spheroid in Comsol Multiphysics [1]

- Fixed but deformable grid
- Velocity boundary condition on particle surface
- Coupled motion of particle and fluid
- Step 1: Solve the stationary flow problem
- Step 2: Use the Eigenvalue solver to analyze stability of the solution
- Real part of Eigenvalue directly related to Orbit drift

Validation: Effect of particle inertia

Model matches exactly

- Neutrally buoyant particles:
 - Fluid inertia dominates over particle inertia
- Low particle Reynolds number:
 - · Fluid inertia and particle inertia both act in the same direction

- Neutrally buoyant particles:
 - Fluid inertia dominates over particle inertia
- Low particle Reynolds number:
 - · Fluid inertia and particle inertia both act in the same direction

- Neutrally buoyant particles:
 - Fluid inertia dominates over particle inertia
- Low particle Reynolds number:
 - · Fluid inertia and particle inertia both act in the same direction

- Neutrally buoyant particles:
 - Fluid inertia dominates over particle inertia
- Low particle Reynolds number:
 - · Fluid inertia and particle inertia both act in the same direction

Scaling of Stokes number

$$St^* = \frac{\rho_p}{\rho_f} \cdot Re_p + K \cdot r_p^* \cdot Re_p$$
 $K = 9/4$ (prolate) $K = 23/16$ (oblate)

Meaning of scaling

Added mass:

$$\underbrace{Re_p \cdot (\frac{\rho_p}{\rho_f} + Kr_p^*) \cdot [\mathbf{I}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times (\mathbf{I} \cdot \boldsymbol{\omega})]}_{St^*} = \mathbf{T}_{Jeffery}$$

Correction to Jeffery torques:

$$St \cdot [\boldsymbol{I}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega})] = \boldsymbol{T}_{Jeffery} - \underbrace{K \cdot Re_p \cdot r_p^* \cdot [\boldsymbol{I}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I} \cdot \boldsymbol{\omega})]}_{\boldsymbol{T}_{corr}}$$

Issues: Generality

Not able to capture full orbit drift

Conclusions

- Fluid inertia domination at low particle Reynolds numbers as long as particle is close to neutrally buoyant.
 Matching Stokes number is not the answer.
- Fluid inertia acts in same direction as particle inertia.
 Scaling the Stokes number might be the answer.
- Work still to be done. A constant Stokes scaling is still not enough to capture the full orbit drift with fluid inertia.
- Solutions consistent with previous DNS results, but not consistent with certain theoretical works, e.g.
 Subramanian & Koch, JFM 557 (2006)

Thank you!

