Particles settling in a cellular flow field at low Stokes number

<u>Diego Lopez</u>, Laurence Bergougnoux, Gilles Bouchet & Elisabeth Guazzelli

Aix Marseille Université, CNRS, IUSTI UMR 7343, 13453, Marseille, France

8th MC-WG Meeting of COST Action FP1005 Caen, October 22, 2014

Transport and sedimentation

Flow turbulence effect on settling particles

Preferential sweeping and typical trajectories

Wang & Maxey JFM 1993

FIGURE 13. Sketch showing the preferential sweeping mechanism for a heavy particle interacting with local flow vortical structures under its inertia and body force.

Maxey PoF 1987, Aliseda et al. JFM 2002, Yang & Shy PoF 2003, Climent & Maxey IJMF 2003, Bosse et al. PoF 2006, Marchioli et al. PoF 2007 . . .

I. Experiments

II. Spheres

1. Model

2. Particle trajectories and results as inertia increases

III. Fibres

1. Model

2. Particle trajectories and preliminary results

Experimental setup

Flow field generated by electroconvection

Magnetic filed (permanent magnets) Electric current

Water + citric acid + Ucon Oil[®]: possibility to control density and viscosity

Electromagnetic forcing $\propto \mathbf{j} imes \mathbf{B}$

Experimental flow

PIV measurements velocities from 0.5 to 10 mm/s

Stationary flow Tabeling et al., EPL 1987

Quasi-2D flow modeled by Taylor-Green Vortices $\psi = U_0 \frac{L}{\pi} \sin(\pi x/L) \sin(\pi y/L)$

I. Experiments

II. Spheres

1. Model

2. Particle trajectories and results as inertia increases

III. Fibres

1. Model

2. Particle trajectories and preliminary results

Model

Advection of a small particle in an unstationary flow: Dimensionless Basset-Boussinesq-Oseen equation

Gatignol JMTA 1983 Maxey & Riley PoF 1983

Using size L and velocity U_0 of the vortices

$$\begin{aligned} \frac{d\mathbf{v}}{dt} &= \frac{1}{St} (\mathbf{W} + \mathbf{u} - \mathbf{v} + \frac{P^2}{6} \nabla^2 \mathbf{u}) \\ &+ \frac{R(\frac{3}{2}\mathbf{u} \cdot \nabla \mathbf{u} + \frac{P^2}{20} \mathbf{u} \cdot \nabla \nabla^2 \mathbf{u}) \\ &+ \frac{3}{\sqrt{2}} \sqrt{\frac{R}{St}} \int_0^t \frac{-d\mathbf{v}/d\tau + \mathbf{v} \cdot \nabla \mathbf{u} + \frac{P^2}{6} \mathbf{v} \cdot \nabla \nabla^2 \mathbf{u}}{\sqrt{\pi(t - \tau)}} d\tau \end{aligned}$$

$$\begin{split} St &= \frac{2}{9} \frac{(\rho_p + \rho_f/2) a^2 U_0}{\mu L} = \frac{\text{Particle response time}}{\text{Flow time scale}} \qquad P = a/L \ll 1\\ \mathbf{W} &= \frac{\mathbf{W_s}}{U_0}\\ R &= \frac{\rho_f}{\rho_p + \rho_f/2} \end{split}$$

Model

Advection of a small particle in an unstationary flow: Dimensionless Basset-Boussinesq-Oseen equation

Gatignol JMTA 1983 Maxey & Riley PoF 1983

Using size L and velocity U_0 of the vortices

$$\begin{aligned} \frac{d\mathbf{v}}{dt} &= \frac{1}{St} (\mathbf{W} + \mathbf{u} - \mathbf{v} + \frac{P^2}{6} \nabla^2 \mathbf{u}) \\ &+ \frac{R(\frac{3}{2}\mathbf{u} \cdot \nabla \mathbf{u} + \frac{P^2}{20} \mathbf{u} \cdot \nabla \nabla^2 \mathbf{u}) \\ &+ \frac{3}{\sqrt{2}} \sqrt{\frac{R}{St}} \int_0^t \frac{-d\mathbf{v}/d\tau + \mathbf{v} \cdot \nabla \mathbf{u} + \frac{P^2}{6} \mathbf{v} \cdot \nabla \nabla^2 \mathbf{u}}{\sqrt{\pi(t - \tau)}} d\tau \end{aligned}$$

$$St = \frac{2}{9} \frac{(\rho_p + \rho_f/2)a^2 U_0}{\mu L} = \frac{\text{Particle response time}}{\text{Flow time scale}} \qquad P = a/L \ll 1$$
$$\mathbf{W} = \frac{\mathbf{W}_s}{U_0}$$
$$R = \frac{\rho_f}{\rho_p + \rho_f/2}$$

Low Stokes number: Drag – Buoyancy only $\mathbf{v} = \mathbf{u} + \mathbf{W}$

Experimental results

St << 1 and Particle Reynolds number Re_p << 1

Experiment

Model (Stommel)

Experimental results

Bergougnoux et al., Phys. Fluids 2014

I. Experiments

II. Spheres

1. Model

2. Particle trajectories and results as inertia increases

III. Fibres

1. Model

2. Particle trajectories and preliminary results

Effect of anisotropy

Settling velocity and direction depend on orientation

Tumbling dynamics can be chaotic

Mallier & Maxey PoF 1991

Low Stokes number regime

Slender body theory: Jeffery 1922, Batchelor 1970, Cox 1970

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \left[\boldsymbol{\Omega} + \frac{A_e^2 - 1}{A_e^2 + 1} \mathbf{E}\right] \boldsymbol{p}$$

 $A_e pprox 0.7A$ Mason PRSA 1956

$$\boldsymbol{\Omega} = \frac{1}{2} \left(\nabla \boldsymbol{U} - {}^{t} \nabla \boldsymbol{U} \right)$$
$$\mathbf{E} = \frac{1}{2} \left(\nabla \boldsymbol{U} + {}^{t} \nabla \boldsymbol{U} \right)$$

Numerical results (1)

Numerical results (2)

Preliminary experimental results

St << 1 and $Re_{\rm p} \sim 0.1$

First order drag

Preliminary experimental results

St << 1 and $Re_{p}\sim 0.1$

- First order drag
- Second order drag

Preliminary experimental results

St << 1 and $Re_{\rm p}\sim 0.1$

- First order drag
- Second order drag

Good agreement with Stommel model with 2nd order drag (1/ln²(A))

Problem: difficult to make a 2D experiment

Back wall distance fluctuates from $\pm 5a$ to whole tank

Conclusion

Settling of spheres in cellular flow

Experimental examination of the settling of individual spherical particles in a 2D cellular flow field

Precise testing of the BBO equation of motion Dominant effect of inertia: drag correction

Bergougnoux et al., Phys. Fluids 2014

Effect of particle anisotropy

Preliminary results: importance of second order corrections on drag

Ongoing work

Full 3D analysis in the case of fibres Inertia effects on fibres (drag and orientation)

Trapping and suspension