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Introduction and notations
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Introduction: The interest of studying dumbbells lies in the simplicity of their
geometries⇒ exploitation of the many results available on spheres.
Basic assumptions: The dumbbell is composed of two identical spheres,
denoted by A and B, of mass m and radius a, linked by a virtual rigid-rod.
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Angular momentum of the dumbbell

Orientational dynamics is governed by the angular momentum equation

σ̇G = mh (1)

where

σG = m
((
− `

2
× uA +

2
5

a2 ω

)
+

(
`

2
× uB +

2
5

a2 ω

))
,

ω is the angular velocity of the body,

mh is the hydrodynamic torque acting on the spheres.

By exploiting (i) the rigid motion of the dumbbell

uB = uG + ω × `
2

and uA = uG − ω ×
`

2
.

and (ii) by introducing the orthogonal vectors t1, t2 and t3 such that ` = ` t1 ,

σ̇G =
m`2

2

((
1 +

8
5

a2

`2

)
t1 × ẗ1 +

8
5

a2

`2 Ω̇1 t1 +
8
5

a2

`2 Ω1 ṫ1

)
.
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Hydrodynamic torque

The hydrodynamic torque acting on the dumbbell

mh =
`

2
× δf + mhA + mhB ,

mhA and mhB are the torque acting on the spheres A and B (w.r.t. their
centres)
δf = fB − fA

1) Projection of the angular momentum eq. along t1 (spin equation):

m
4
5

a2 Ω̇1 = (mhA + mhB) · t1

2) Cross product the angular momentum eq. with t1:

m`
(

1 +
8
5

a2

`2

)(
ẗ1 + (ṫ1 · ṫ1) t1

)
=
(

I− t1 ⊗ t1

)
· δf

+
2
`

(mhA + mhB)× t1 + m`
8
5

a2

`2 Ω1 t1 × ṫ1 .

(2)
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Angular momentum equation

It is worth noting that the tensor(
I− t1 ⊗ t1

)
=
(

t2 ⊗ t2 + t3 ⊗ t3

)
= P⊥

actually defines a projector onto the plane (t2, t3).
By introducing explicitly the components of the vector ṫ1 (which is ⊥ to t1)

ṫ1 = V 2 t2 + V 3 t3 = Vα tα (Vα ≡ Angular velocity)

it may be shown after some simple algebra, that

ẗ1 + (ṫ1 · ṫ1) t1 = V̇ 2 t2 + V̇ 3 t3 + Ω1t1 × ṫ1 .

As a result the equation governing the orientational dynamics simply reads as(
1 +

8
5

a2

`2

)
V̇αtα =

P⊥ · δf
m`

+
2

m`2

(
(mhA+mhB)×t1

)
−
(

Ω1t1×ṫ1

)
, α = 2, 3.

↪→ the problem is the determination of δf
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Introduction of the method of reflexions in a simple case

The method of reflexions is based on an iterative process:
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As a first step, the sphere A is considered as if it were alone in fluid

wA(y) = −G(y) · f1(0)
A where f1(0)

A = −6πµa uA

and G is a tensor whose components (in the Cartesian basis) are

Gij =
1

8πµ

(
δij

r
+

yiyj

r 3

)
, r = |y| .
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Introduction of the method of reflexions

α

wA(y)

A

B

G

ei

x

xA
uB

uG

f
1(1)
B

ℓ/2

−ℓ/2

As a second step, the sphere B is introduced in the flow field wA, and
the force acting on it reads as (Faxen’s corrections ∼ O(a3/`3))

f1(1)
B = −6πµa(uB −wA(`)) ,

↪→ wB = −G · f1(1)
B = 6πµa (G · uB − 6πµa G ·G · uA) ,
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and so on... Force acting on the sphere A corrected up to O(a2/`2) :

f1(2)
A = −6πµa(uA−6πµaG(−`)·uB+(6πµa)2G(−`)·G(−`)·uA)+O(a3/`3).

and reciprocally,

f1(2)
B = −6πµa(uB−6πµaG(`) ·uA + (6πµa)2G(`) ·G(`) ·uB) +O(a3/`3) .

By using the following property: G(`) = G(−`),

δf = −6πµa
(

I + 6πµa G(`) + (6πµa)2 G(`) ·G(`)
)
· ˙̀ + O(a3/`3) .

In this simple Stokes problem, it is finally found that

P⊥ · δf = −6πµa
(

1 +
3
4

a
`

+
9

16

(a
`

)2
)

Vαtα .

As expected in the case ω = 0 at t = 0, i.e. ṫ1 = 0, the angular velocity
remains zero at any time.
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Results in a quiescent fluid
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Solving the (normalized) momentum equation of the dumbbell yields

uG ∼ −
(

I−6πG(`)
)−1
·e3 , and β = arctan

(
3 cos(α) sin(α)

4`− 3− 3 cos(α)2

)
.

β angle of the trajectory w.r.t. the vertical
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Method of reflexions in linear flows

We consider now the case where the dumbbell is immersed in a linear flow

v = A · x ,
Unperturbed force acting the sphere A and B are not identical:

δf0 = mf
Dv
Dt

∣∣∣
xB

−mf
Dv
Dt

∣∣∣
xA

= mf A2 · ` .

Perturbation force: very similar results are found except that the
velocities uA and uB have to be replaced here by the relative (slip)
velocities uA − v(xA) and uB − v(xB).

By using the fact v(xB)− v(xA) = A · `

δf1 = −6πµa
(

I + 6πµa G(`) + (6πµa)2 G(`) ·G(`)
)
· ( ˙̀ − A · `) ,

and finally, we are led to

δf = δf0 +δf1 = mf A2 ·`−6πµa
(

I+6πµaG(`)+(6πµa)2 G(`)·G(`)
)
·( ˙̀−A·`).
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Method of reflexions in linear flows

For the hydrodynamic torques (which scale as O(a2/`2)) no reflexions are
needed.
By normalising time with 1/

√
A : A, lengths by a, and by introducing the

classical decomposition

A = Ωf + E where E =
1
2

(
A + At

)
and Ωf =

1
2

(
A− At

)
we are led to(

1 +
8
5

a2

`2

)
V̇α tα = γ P⊥ · A2 · t1 −

1
St

(9
2

+
27
8

a
`

+
849
32

a2

`2

)
(ṫ1 −Ωf · t1)

+
1
St

(9
2

+
27
8

a
`

+
81
32

a2

`2

)
P⊥ · (E · t1) .

(3)

where

γ =
ρf

ρp
and St =

a2

ν τ

ρp

ρf
(Stokes number).
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Recovering Jeffery’s orbits

In the limit where 1/St →∞,

ṫ1 = Ωf · t1 +

9
2

+
27
8

a
`

+
81
32

a2

`2

9
2

+
27
8

a
`

+
849
32

a2

`2

P⊥ · (E · t1) .

To simplify this equation, we may note that

9
2

+
27
8

a
`

+
81
32

a2

`2

9
2

+
27
8

a
`

+
849
32

a2

`2

∼ 1− 16
3

a2

`2 + O
(

a3

`3

)
,

so that a dumbbell of a given aspect ration (i.e. `/a) should have the very
same behaviour of an ellipsoid whose aspect ratio is given by

r ∼
√

6
4
`

a
.

(see Hinch & Leal 1973)
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Inertia effects in a quiescent fluid (Khayat & Cox 1989)

We denote by
ε =

au
ν

the (vectorial) Reynolds number of the sphere, so that the Oseen’s equations
to solve are

−ε ·∇w = −∇p +∇2w + f δ , (4)

∇ ·w = 0 . (5)

The Green’s function of the Oseen’s equation (found by using Fourier
Transforms):

w =
exp
(
− 1

2 (εr + ε · y)
)

8π r
f+

(
1−

(
1 +

ε r
2

)
exp
(
− 1

2
(εr + ε · y)

)) f y
ε4π r 3 .

(6)
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Inertia effects in quiescent fluid (Khayat & Cox 1989)
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In the limit where uB − uA ∼ O(Re): δf = 6π (w(`)−w(−`))

δf = −3
8

Re
(

sinα(1 + sin2 α) e‖ − cos3 α e⊥
)
⇔ P⊥·δf = −3

8
Re sin 2α t⊥

↪→ Equilibrium: α = 0 (stable) and α = π/2 (unstable)
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Inertia effects in Linear flows

In a linear flow field, the (steady) perturbation flow produced can be
expanded (in a region defined by r ∼ a/Re1/2) in the form

wA = −G · f1(0)
A − Re1/2M · (uA − v(xA))

i.e. Stokeslet + a uniform flow (fluid inertia effects).

If we assume that ` ∼ a/Re1/2 ⇒ the sphere B is (i) located in the far-field
flow produced by the sphere A, and (ii) submitted to inertia effects:

f1(1′)
B = −6π

(
I + Re1/2 M

)
·
(

uB − 6πG(`) · uA + Re1/2M · uA

)
.

Pursuing the iterations up to O(a3/`3) provides us with

f1(2′)
A = −6π

(
I+Re1/2M

)
·
(

uA−6πG(`)·uB +Re1/2M·uB +(6π)2G(`)·G(`)·uA

)
where the last two terms are of the same order of magnitude O(a2/`2).
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Fluid inertia effects in quiescent

We are finally led to

δf1 = −6π
(

I+6πG(`)+(6π)2G(`)·G(`)+6πRe1/2M·G(`)−ReM·M
)
·( ˙̀−A·`) :,

Note that in the case of a rotating fluid the components of M in the Cartesian
basis (Herron et a. 1975)

M =

 5/7 −3/5 0
3/5 5/7 0
0 0 4/7

 .

Similarly, in the case of a pure shear flow A = e1 ⊗ e3 (Miyazaki et al. 1995)

M =

 0.0743 0 0.944
0 −0.577 0

0.343 0 0.327

 .

Problem in the case of a pure shear flow...
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Conclusions

Many results concerning the behaviours of fibres are well recovered
with the dumbbell (sedimentation in a fluid at rest including particle
Reynolds number effects, Jeffery’s orbits).

Using the method of reflexions seems promising to investigate fluid
inertia effects on the orientational dynamics of dumbbells.

Such results should provide us with correct tendencies concerning fluid
inertia on fibres.

However, in general, the perturbation flow produced by the sphere is
affected both by convective inertia effect and unsteady effect.
↪→ Taking both these effects into account remains a challenging task.
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