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General equations

Dynamics of dumbbell in a quiescent fluid

Dynamics of a dumbbell in linear flows (Jeffery’s orbits)
Fluid inertia effects

Introduction and notations

Introduction: The interest of studying dumbbells lies in the simplicity of their
geometries = exploitation of the many results available on spheres.

Basic assumptions: The dumbbell is composed of two identical spheres,
denoted by A and B, of mass m and radius a, linked by a virtual rigid-rod.
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Angular momentum of the dumbbell

Orientational dynamics is governed by the angular momentum equation

g =My (1)

where
ooo=—m((-Exutl2w)t (Exut 22w
oG = > A 5 w 2 B 5 s

@ w is the angular velocity of the body,
@ my is the hydrodynamic torque acting on the spheres.
By exploiting (i) the rigid motion of the dumbbell

£
uB:uG+wx§ and uA:uG—WXE-

and (ii) by introducing the orthogonal vectors ti, t> and tz such that £ = ¢t |

me? 8 & . 8a 4 8& .
re= 0 (14224 22 124 gy .
76773 (<1 562>t1“‘ st Ee t‘)
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Hydrodynamic torque

The hydrodynamic torque acting on the dumbbell

£
m,=—- x5f+mps+mys,

2
@ my, and myg are the torque acting on the spheres A and B (w.r.t. their
centres)
Q@ =11,

1) Projection of the angular momentum eq. along t; (spin equation):
4
5
2) Cross product the angular momentum eq. with t:

mt (1 + g%:) (t1 +(i1 ~i1)t1) :(|,t1 ®t1) - of

& Q' = (Mpa+mpg) - 4

2 8 :
+ Z(mhA+th) x t1 +mé 5@9‘ ti xty.
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Angular momentum equation

It is worth noting that the tensor
(l—t1 ®t1) = (t2®tz+t3®t3) =P,

actually defines a projector onto the plane (tz, t3). '
By introducing explicitly the components of the vector t1 (which is L to ty)

ti= V2t + Vit = V*t, (V™= Angular velocity)
it may be shown after some simple algebra, that
.1.1 +(t1 ~i1)t1 = V212+ V3t3+Q1t1 Xi1 .

As a result the equation governing the orientational dynamics simply reads as

84\ (o, PL-0f 2 e s B
(1+572)Vt£_ - +m—€2((mhA+th)><l1)—(Qt1><t1), a=23.

— the problem is the determination of 6f
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Introduction of the method of reflexions in a simple case

The method of reflexions is based on an iterative process:

@ As afirst step, the sphere A is considered as if it were alone in fluid
wa(y) = —G(y) - qu(o) where fl\(o) = —6mpaua
and G is a tensor whose components (in the Cartesian basis) are

(% vk —
6”787m(r+r3 ’ r*|y‘
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€

@ As a second step, the sphere B is introduced in the flow field w,, and
the force acting on it reads as (Faxen’s corrections ~ O(a*/¢®%))

i) = —6rpua(us — wa(e)),

— Wg= —G-f;“) =6rua(G-ug—6muaG-G-uy),
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Introduction of the method of reflexions

@ and so on... Force acting on the sphere A corrected up to O(&?/¢?) :
f®) = —6rpa(ua—6rpaG(—£)-Us+(67ua)’G(—L)-G(—£)-ua)+0(a° /).
and reciprocally,
f1® — _6rua(us —6muaG(L) - ua+ (6rua)’G(e)-G(£)-ug)+ O(a* /).
By using the following property: G(£) = G(—¥£),
of = —67wa(l +67paG(£) + (6rua)? G(L) - G(e)) 0+ 0P
In this simple Stokes problem, it is finally found that

3a 9 sa\? o
PJ_~5f——67r,ua (1+Zz+%(z)) Vta.

As expected in the case w = 0 at t = 0, i.e. t = 0, the angular velocity
remains zero at any time.
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@ Solving the (normalized) momentum equation of the dumbbell yields
3cos(a) sin(a) )

—1
ug ~ — (I—GwG(E)) -ez, and pj=arctan (46— 3 — 3cos(a)?

@ 3 angle of the trajectory w.r.t. the vertical
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Method of reflexions in linear flows

We consider now the case where the dumbbell is immersed in a linear flow
v=A-X,
@ Unperturbed force acting the sphere A and B are not identical:
Dv Dv

M =m= —m=
M Dtl, ™Dt

— 2,
Dt 7m,A £.

XA

@ Perturbation force: very similar results are found except that the
velocities us and ug have to be replaced here by the relative (slip)
velocities ug — v(x4) and ug — v(x3).

By using the fact v(xg) — v(xa) = A - £
5t = —6rua(1+ 6raG(e) + (Brua)’ G(e) - G(O)) - (L~ A-0),
and finally, we are led to

5f = 6 +-6f" = m,«AZ-£767rua(l+67waG(£)+(67rua)2G(£)-G(E)) (£—A-2).
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Method of reflexions in linear flows

For the hydrodynamic torques (which scale as O(&?/¢2)) no reflexions are
needed.

By normalising time with 1/+/A : A, lengths by a, and by introducing the
classical decomposition

A=Q;+E where E:%(A+A') and Qf:-l(AfAI)

2
we are led to
88\ o, _ 2 1 /9 27a, 849&\,,
(”572) Vite =P At - o (5 g o) -2 t)
1,9 27a 814
Gt itame)P EY.
(©)
where

v=P" and S = & (Stokes number).
Pp VT pt
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Recovering Jeffery’s orbits

In the limit where 1/S; — oo,

9, 27a 812
t—q .t 2 8L 32¢
9 27a 8494
2 gr T 2
To simplify this equation, we may note that
9 27a 812
2 80 £ 4y 164
9 27a 849 &° 32
2 8¢ 32p

P, - (E-ty).

o(2).

so that a dumbbell of a given aspect ration (i.e. £/a) should have the very
same behaviour of an ellipsoid whose aspect ratio is given by

V6 ¢

™% a

(see Hinch & Leal 1973)
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Inertia effects in a quiescent fluid (Khayat & Cox 1989)

We denote by
au
€= —
14
the (vectorial) Reynolds number of the sphere, so that the Oseen’s equations
to solve are

—e- VW = —Vp+Vw+15, (4)
V-w = 0. (5)
The Green’s function of the Oseen’s equation (found by using Fourier
Transforms):
exp(—%(er—i—e-y)) er 1 fy
w= 8T f+(1—(1+z)exp(—i(er—ke-y)))Tmrs.
(6)
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In the limit where ug — ua ~ O(Re): 6f = 67 (W(£) — w(—£))

of = —gRe (sina(1 +sin’a) e —cossaei) & PLof= —gResinza t.

—  Equilibrium: o = 0 (stable) and o = 7/2 (unstable)
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Inertia effects in Linear flows

In a linear flow field, the (steady) perturbation flow produced can be
expanded (in a region defined by r ~ a/Re'/?) in the form

ws=—G- ¥ —Re"?M - (ua — v(xa))

i.e. Stokeslet + a uniform flow (fluid inertia effects).

If we assume that ¢ ~ a/Re'/? = the sphere Biis (i) located in the far-field
flow produced by the sphere A, and (ii) submitted to inertia effects:

10 = —eﬂ(l +Re'/? M) : (uB — 67G(£) - us + Re'/°M - uA) .
Pursuing the iterations up to O(a®/¢%) provides us with
120 = —67r(|+Re1/2M)~(uA—GnG(£)~uB+Re1/ZM-uB+(6w)2G(£)-G(£)~uA)
where the last two terms are of the same order of magnitude O(&?/¢?).
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Fluid inertia effects in quiescent

We are finally led to
of! = —67r(I+67TG(£)+(67r)2G(£)-G(£)+67rRe1/ZM-G(E)—ReMM)-(Z—A-e) ;,

Note that in the case of a rotating fluid the components of M in the Cartesian
basis (Herron et a. 1975)

5/7 -3/5 0
M= ( 3/5 5/7 0 ) .
0 0 47

Similarly, in the case of a pure shear flow A = e ® e3 (Miyazaki et al. 1995)

0.0743 0 0.944
M= 0 —-0.577 0 .

0.343 0 0.327

Problem in the case of a pure shear flow...
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Conclusions

@ Many results concerning the behaviours of fibres are well recovered
with the dumbbell (sedimentation in a fluid at rest including particle
Reynolds number effects, Jeffery’s orbits).

@ Using the method of reflexions seems promising to investigate fluid
inertia effects on the orientational dynamics of dumbbells.

@ Such results should provide us with correct tendencies concerning fluid
inertia on fibres.

@ However, in general, the perturbation flow produced by the sphere is
affected both by convective inertia effect and unsteady effect.
— Taking both these effects into account remains a challenging task.
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