

Predicting pressure drop in a pipe flow of concentrated pulp suspensions

C. Cotas, D. Asendrych, F. Garcia, P. Faia, M.G. Rasteiro

Unversidade de Coimbra, Portugal Częstochowa University of Technology, Poland

COST ACTION FP1005 (8th Joint MC/WG Meeting) 22-24 October 2014, Caen, France

- Objectives
- Experimental data
- Previous studies
- Numerical model
- Bartosik damping function
- Numerical results
- Conclusions & Future work

Modelling the flow of concentrated fiber suspensions in pipes using commercial CFD code

"Using CFD to model fibre suspensions flows - FIBERFLOW"

- Characterization of the pulp suspension rheology
- Adaption of low-Reynolds (LRN) k-ε turbulence models to take into account the presence of fibers – source terms and rheological model
- Validation of the model

Crowding factor

Schematic view of the pilot rig (adapted from Ventura *et al* 2008)

Ventura, C.; Garcia, F.; Ferreira, P.; Rasteiro, M. (2008) - "Flow Dynamics of Pulp Fiber suspensions" - TAPPI Journal, 7(8): 20-26

Predicting pressure drop in a pipe flow... COST FP1005 WG/MC meeting, 22-24.X.2014, Caen 기드는

Condition

- •2D axisymmetrical flow
- •non-Newtonian fluid viscosity
- •water annulus water viscosity

boundaries

Axis

Wall

General transport equation

$$\frac{1}{r} \left[\frac{\partial}{\partial x} (r\rho u\phi) + \frac{\partial}{\partial r} (r\rho v\phi) \right] = \frac{1}{r} \left[\frac{\partial}{\partial x} \left(r\Gamma_{\phi} \frac{\partial\phi}{\partial x} \right) + \frac{\partial}{\partial r} \left(r\Gamma_{\phi} \frac{\partial\phi}{\partial r} \right) \right] + S_{\phi}$$

dependent variables ϕ , diffusibility term Γ_{ϕ} and source-term S_{ϕ} (Hsieh and Chang, 1996).

Equation	ϕ	Γ_{ϕ}	S_{ϕ}
Continuity	1	0	0
Momentum - axial	и	$\mu_{e\!f\!f} = \mu + \mu_t$	$-\frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{eff} \frac{\partial u}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu_{eff} \frac{\partial v}{\partial x} \right)$
Momentum - radial	v	$\mu_{e\!f\!f} = \mu + \mu_t$	$-\frac{\partial P}{\partial r} + \frac{\partial}{\partial x} \left(\mu_{eff} \frac{\partial u}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu_{eff} \frac{\partial v}{\partial r} \right) - 2 \mu_{eff} \frac{v}{r^2}$
Kinetic energy	k	$\mu + \mu_t / \sigma_k$	$G_k - \rho \varepsilon$
Dissipation rate	З	$\mu + \mu_t / \sigma_{\mathcal{E}}$	$(C_{\varepsilon 1}f_1G_k - C_{\varepsilon 2}f_2\rho\varepsilon)\varepsilon/k$
$G_{k} = \mu_{t} \left\{ 2 \left[\left(\partial u \right) / \partial u \right] \right\}$	$(\partial x)^2 + (\partial$	$v / \partial r$) ² + $(v / r)^2$	$+\left(\partial v / \partial x + \partial u / \partial r\right)^{2} \bigg\}; \qquad \mu_{t} = \rho C_{\mu} f_{\mu} k^{2} / \varepsilon$

- > 6 built-in LRN turbulence models were evaluated
- > 2 different rheological models were evaluated:

• A *drag reduction* can be observed in all cases when using LRN turbulence models

- The models of Abe-Kondoh-Nagano (AKN) and Chang-Hsieh-Chen (CHC) showed the best fit to the experimental data
- The damping function f_{μ} can be modified taking into account the literature for polymer solutions flows (Malin damping function) and for particle suspensions flow (Bartosik damping function).
- The application of the **damping function of Malin was not able to improve** the numerical results.
- The numerical results can be improved significantly by applying an "optimized" Malin damping function.
- Further improvement needed...

Pulp rheology

The best fit of experimental rheological data modified expression

pulp consistencies c [%]: 1.50, 1.80, 2.50 2.90, 3.20 , 3.50

Modification of the damping functions f_μ of the AKN and CHC turbulence models (implemented in Ansys Fluent) according to Bartosik (2011) for particle suspensions flow (uniform particles distribution):

$$f_{\mu} = 0.09 \exp\left[-\frac{-3.4 \left[1 + A_s^{3} d^{2} (8 - 88A_s d) c_v^{0.5}\right]}{\left(1 + \frac{Re_t}{50}\right)^{2}}\right]$$

 A_s – empirical constant (=100) c_v – averaged volume fraction of solids d – averaged solid particles diameter

Modification the constants of the Bartosik damping function:

$$f_{\mu} = \underline{C} \cdot \exp\left[-\frac{-3.4 \left[1 + \underline{A}^{3} \underline{B}^{2} (8 - 88 \cdot \underline{A} \cdot \underline{B}) c_{v}^{0.5}\right]}{\left(1 + \frac{Re_{t}}{50}\right)^{2}}\right] \qquad \text{Re}_{\text{T}} = \frac{k^{2}}{\varepsilon v}$$

Bartosik, A. – "*Mathematical modelling of slurry flow with medium solid particles*" – Mathematical Models and Methods in Modern Science, International Conference Mathematical Models and Methods in Modern Science, Spain, 10-12 December, 2011. ISBN 978-1-6-61804-055-8, pp.124-129.

Simulation results

Convergence criterion = 1×10^{-5} Water annulus and non-Newtonian fluid

$$\eta_{app} = \frac{c^{al}}{\frac{a0 \cdot c}{\gamma}} \cdot 10^{a2}$$

<i>c</i> [% w/w]	<i>U_{in}</i> [m·s⁻¹]	<i>ΔΡ/L_{exp.}</i> [Pa·m ⁻¹]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]	<i>∆P/L_{num}</i> [Pa·m ⁻¹]	δ [%]
1 50	4.49	829	1560	88	1032	24	1763	113	1022	23
1.50	6.21	1289	387	70	1776	38	3164	146	2026	57
2.50	4.90	2299	1861	18	1624	3	1843	17	1632	3
	5.55	2814	2046	17	1800	3	2022	16	1811	3
		AKN		AKN-Bartosik		СНС		CHC-Bartosik		

- A drag reduction can be observed in all cases when AKN and CHC turbulence models are used.
- Results allow to conclude that the AKN and CHC models modified with the damping function of Bartosik show a better fit to the experimental data.
- To improve the numerical results, the constants of **Bartosik** damping function f_{μ} can be modified - A_s and d for the pulp flow can be different from those used by Bartosik to study the particle suspensions flow.

Simulation results

Bartosik damping function

$$f_{\mu} = C \cdot \exp\left[-\frac{-3.4 \left[1 + A^{3} B^{2} (8 - 88 \cdot A \cdot B) c_{v}^{0.5}\right]}{\left(1 + \frac{Re_{t}}{50}\right)^{2}}\right]$$

8	7				Case								
	-	6	5	4	3	2	1						
100	100	100	100	100	150	50	100	A					
1.6	1.6	1.6	1.6	70.6	1.6	1.6	1.6	B ×10 ⁵					
2.45	3.75	4.75	6.75	9	9	9	9	C×10 ²					
_	100 1.6 3.75	100 1.6 4.75	100 1.6 6.75	100 70.6 9	150 1.6 9	50 1.6 9	100 1.6 9	A B×10 ⁵ C×10 ²					

- Change of **A** does not have a significant effect on the numerical pressure drop

- Change of **B** (regarded as fiber length instead of the fiber diameter) does not influence significantly the numerical pressure drop

New damping function tested – **Bartosik (***AKN model modified***)**

Case	Modification	c [% w/w]	U _b [m·s ⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa∙m ⁻¹]	ΔΡ/L _{num.} [Pa·m ⁻¹]	δ [%]
A1	- AKN-Bartosik	1.50	4.49	62830	829	1032	24
B1		1.50	6.21	95822	1289	1776	38
C1		2.50	4.90	15904	1579	1624	3
D1		2.50	5.55	19479	1754	1800	3
A6	<i>C</i> =0.0475	1.50	4.49	63071	829	808	3
B7	C=0.0375	1.50	6.21	96694	1289	1298	1
С5	<i>C</i> =0.0675	2.50	4.90	15868	1579	1577	0.1
D5	C=0.0675	2.50	5.55	19467	1754	1750	0.2

New damping function tested – **Bartosik (***AKN model modified***)**

• The **AKN** LRN turbulence model considering the **Bartosik damping function** f_{μ} with *C* **modified improves the numerical results.**

• The parameter *C* should be **lower** than the value used by Bartosik for particle suspensions flow.

0.09 -> 0.04-0.07

New damping function tested – **Bartosik** (*CHC model modified*)

Case	Modification	с [% w/w]	U _b [m·s ⁻¹]	Re _w	ΔΡ/L _{exp.} [Pa∙m ⁻¹]	ΔΡ/L _{num.} [Pa·m ⁻¹]	δ [%]
A1	- CHC-Bartosik	1.50	4.49	62531	829	1022	23
B1		1.50	6.21	94868	1289	2026	57
C1		2.50	4.90	16357	1579	1632	3
D1		2.50	5.55	20040	1754	1811	3
A6	<i>C</i> =0.0475	1.50	4.49	62403	829	832	0.3
B8	<i>C</i> =0.0245	1.50	6.21	95583	1289	1302	1
С5	<i>C</i> =0.0675	2.50	4.90	16270	1579	1587	0.5
D5	C=0.0675	2.50	5.55	20009	1754	1761	0.4

New damping function tested – **Bartosik (***CHC model modified*)

- The numerical pressure drop, U⁺ and k profiles are very similar to that obtained with the AKN-Bartosik model modified (c=2.50% (w/w))
- The CHC LRN turbulence model considering the Bartosik damping function
 *f*_µ with *C* modified improves significantly the numerical results
- The parameter *C* should be **lower** than the value used by Bartosik for particle suspensions flow, mainly, for c=1.50% (w/w)

0.09 -> 0.025-0.07

- The non-Newtonian behaviour of pulp can be expressed as a function of shear rate and pulp consistency - a power-law considering the consistency index and the flow behaviour index as a function of pulp consistency
- The damping function f_µ on these models can be modified taking into account the cases from literature for the simulation of particles turbulent flow
- **Modifications of** the AKN and CHC LRN turbulence models with the damping function according to **Bartosik** lead to **better fit** to the experimental data
- Noticeable improvement of the numerical results can be obtained by modifying the Bartosik damping function
- Model should be used with care limited applicability
- Prediction of pressure drop in a pipe flow of pulp suspensions is a challanging task -> need of further studies...

- Simulation of wider range of fibre consistencies to generalize the model
- Study the modification of the damping function f_{μ} according to Bartosik (2010):

$$f_{\mu} = 0.09 \exp\left[\frac{-3.4\left(1 + \frac{\tau_0}{\tau_w}\right)}{\left(1 + \frac{\operatorname{Re}_t}{50}\right)^2}\right]$$

 τ_0 - yield stress τ_w - stress at the wall

• Rheological tests to try obtain information for low shear rates.

Bartosik, A. (2010) – "Application of Rheological Models in Prediction of Turbulent Slurry Flow" - Flow Turbulence Combust, 84(2):277-293.

- Development of the "water annulus" model:
 - "water annulus" thickness
 - \circ variation of fibre consistency across -> viscosity

 $c(r) = -c_{pulp} \left| r - \left(R - L_{fiber} \right) \right| / L_{fiber} + c_{pulp}$

• Apply the CFD model to study the flow of **pine** suspensions.

Thank you for your attention...

New damping function tested – Bartosik (AKN model modified)

New damping function tested – **Bartosik** (*CHC model modified*)

