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Man-made and natural particle suspensions

Particulate pollution from factories Sand storm in a desert
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Rotation (spin) of inertial particles in viscous fluids  - I

• Fibers and other non-spherical particles: Spin of  
fiber-like particles is an essential feature of the 
particle dynamics. The particle spin is strongly 
coupled to the particle orientation. 

P.H. Mortensen et al., Phys. Fluids 2008
C. Marchioli et al., Phys. Fluids 2010 

• Spherical particles: Nobody cares about the 
orientation of a spherical particle. But the rotation 
might matter.  
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Rotation (spin) of inertial particles in viscous fluids  - II

• Spherical particles: An optical probe invented by 
Frish & Webb (1981) measures the fluid vorticity. 
Assumption: solid spheres rotate at the same rate as 
the local fluid.

• Inertial spheres may rotate slower than the local fluid. 
Shown in direct numerical simulations (DNS) by 
Mortensen et al. (2007) and Zhao & Andersson 
(2011) and in measurements by Bellani et al. (2012). 

M.B. Frish & W.W. Webb, J. Fluid Mech. 1981
P.H. Mortensen et al., Phys. Fluids 2007
L. Zhao & H.I. Andersson, Phys. Fluids 2011
G. Bellani et al., J. Fluid Mech. 2012 
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Microfluids and Micropolar fluids

• Microfluids: A fluid medium whose properties and 
behaviour are affected by the local motion of material 
particles; Eringen (1964).

• Micropolar fluids: A subclass of microfluids that 
exhibit microrotational effects and microrotational 
inertia; Eringen (1966).

• A micropolar fluid represents the rheology of fluid 
suspensions containing bar-like elements, e.g.blod 
cells. 

A.C. Eringen, Int. J. Eng. Sci. 1964
A.C. Eringen, J. Math. Mech. 1966
G. Lukaszewicz:  Micropolar Fluids 

– Theory and Applications, 1999
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Continuum mechanical modeling - I
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Conservation of linear momentum (Newton’s 2nd law) 
can be expressed in Cartesian tensor notation as:

This is Cauchy’s equation of motion. The Navier-Stokes 
equation is obtained with Stokes’ symmetric stress tensor Tij
for an incompressible viscous fluid: 

ji
ij ij

j i

uuT p
x x

 
 

       



7

7

We have used the identity:   

where the angular velocity is: 

Continuum mechanical modeling  - II

A.C. Eringen (1966) showed that the stress tensor for an 
incompressible microfluid simplified to: 

j ji i
ij ij r r mij m

j i i j

u uu uT p 2
x x x x

     
     

                  
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Continuum mechanical modeling  - III

Eringen’s expression can be rewritten as: 

Micropolar rheology is associated with the last term:
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The micro-rotation ω should be obtained from a 
separate transport equation for the angular momentum. 
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Lagrangian modeling of inertial spheres  - I

Rotational motion of a spherical particle (Euler’s equation) : 

The torque vector  N acting on the particle from the 
surrounding Newtonian fluid can be expressed as:

N
dt
dI 


   38 aN

u 21 is the angular velocity of the fluid.
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Lagrangian modeling of inertial spheres  - II

Euler’s  equation for the rotational particle motion: 

Rotational response time:
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Note: This rotational response time is exactly 3/10 of the 
relaxation time for translational motion; Mortensen et al. 
(2007). 
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Lagrangian modeling of inertial spheres  - III

The torque from a single particle on the fluid is        .  
This is equivalent  with Newton’s principle action 
equals reaction.

To any vector -Nm corresponds an anti-symmetric tensor of
2nd - order that contains the same information as the vector.  

N


 38N a     
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Lagrangian modeling of inertial spheres  - IV

The torque vector -Nm can therefore be obtained from a 
particle stress tensor TP according to:

 P
ijmijm TN 

2
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ij mij mT N


This equivalence holds if the particle stress tensor is anti-
symmetric:                . 
Δ is the volume of a small fluid element surrounding the 
particle, for instance a grid cell volume ΔxΔyΔz.

P P
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Lagrangian modeling of inertial spheres  - V

More than one particle may reside in a given fluid element. 
Summation should be carried out over the np-particles in Δ:
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Continuum versus point-particle formulation  - I

Point-particle formulation: 
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Continuum mechanical formulation (Eringen):

 P
ij r mij m mT 2    

Assume that all particles inside Δ have the same relative 
angular velocity. This gives the microrotation viscosity: 
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Continuum versus point-particle formulation  - II

Deduced from DNS data:Microrotation viscosity μr :

• depends on μ
• depends on volumetric

particle loading
• no explicit dependence on

mass
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Conluding remarks and outlook - I

The present analysis has been based on a number of 
simplifying assumptions:
• Eringen’s stress tensor for micropolar fluids
• Lagrangian dynamics of spherical particles 
• Dilute suspension of point-particles
• Stokes-flow approximation for the torque from the 

fluid
Published paper:
H.I. Andersson and L. Zhao: “Bridging the gap between 
continuum mechanical microrotation viscosity and 
Lagrangian point-particles”, ASME Journal of Fluids 
Engineering, Vol. 135, 124502, December 2013. 
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Conluding remarks and outlook - II

The present reasoning is valid also for non-spherical 
particles, e.g. fibers. However, the mathematical 
modeling of the particle rotation will then be more 
complicated:
• The moment of inertia I is a tensor rather than a 

scalar.
• The Jeffery torque components include not only the 

relative rotation but also the shear rate of the flow.
• Intuitively, the microrotation viscosity should be a 

tensor and not a scalar as in the present study for 
spheres.
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• The end • FIN
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Simulation specifications

Simulations by Zhao & Andersson, Comm. Comp. Phys. 2012.

• Frictional Reynolds number Reτ=180 (Kim et al. JFM 1987) 
• Mesh 

– 1923

– ∆x+=11.6, ∆y+=5.3, ∆z+=0.9--2.86 
• Domain size 

– 12h*6h*2h (x*y*z)
• Particle St and radius  

– St = 1, 5, 30, 100, a+=0.36
• Particle number  

– np = 105


