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3 Lectures: 
 

 - Two phase flows, optical techniques & flow tracers 
 - Single & multi-point measurements  
 - Measurements for non spherical particles 
  

Use of optical techniques: the problem of tracers 
Light scattering by particles 
Single point and multipoint techniques 
Laser and Phase Doppler Anemometry 
Imaging techniques: Particle Image Velocimetry & Global Phase Doppler 
Discrimination and phase separation in acquired images 
Two-phase flow measurements in shear layers 
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Overview 



Why to measure in  
two-phase flows 

Why: drag reduction, noise control, sedimentation, pollution and 
environmental phenomena, fiber suspension, sprays and other 
industrial applications, …… and Dolphins play with bubbles !!! 
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What: velocity components, concentration, size, 
cross-correlation among them 
SIMULTANEOUSLY FOR EACH PHASE !!! 
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FLUID-PARTICLE COUPLING 

What to measure in  
two-phase flows 

PARTICLE-PARTICLE COUPLING 

ADDITIONAL EFFECTS 
(rotation, stretching, shear) 

 Fluid 

 Fluid 



Intrusive vs non-intrusive methods 

INTRUSIVE: Grids, WMS (Wire Mesh Sensors), …. = good temporal resolution, 
very low spatial resolution, …… OK for industrial applications 
 
 
 
 
 
 
 
NON-INTRUSIVE: capacitive and magnetic sensors, ultrasound sensors, … = 
sufficient temporal resolution, low spatial resolution   ⇒ OPTICAL TECHNIQUES 
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Grunewald, 2012 

the problem of tracers and light scattering 



Flow Tracers a

dp= 100 µm

b

dp= 10 µm 7 

Do we really measure  
single-phase flows  

in optical techniques? 



Tracer particles 
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 (dp= 40 µm, ρp/ρf <<1)
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Tracer particles 

Stokes frequency   

no effect 

no effect 
low-pass filter 



Effect of tracers in PIV 
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2/3 
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Effect of tracers in PIV 
compensated  
3nd-order 
structure function 



Non-intrusive optical methods 
for measuring particle size 
(in addition to flow tracers) 
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Spherical vs non spherical 
particles 

Single-point methods: Phase Doppler Anemometry (PDA) 
 
Multi-point methods: Global Phase Doppler (GPS) or Interferometric 
Laser Imaging Droplet Sizing (ILIDS), Image Analysis Methods 
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Single-point methods: PDA: not working 
 
Multi-point methods: ILIDS: not working, Image Analysis Methods: OK 
 

spherical 

non-spherical 

Durst et al. 1976, Konig et al. 1986, Kiger & Pan 2000 

Parsa et al. 2011, Dearing et al. 2013 

light scattering by particles 



Light scattering 
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Complex for spherical particles 
Very complex for non-spherical particles 

m2 

m1 



Light scattering 

refraction  
1st order 

Incident light 

reflection 

refraction 
2nd order 

3rd order 

4th order 

5th order 

6th order 

7th order 

8th order 

m1 

m2 

m1  > m2 x=πd/λ  
     d = particle diameter 
       λ = light wavelength 

 
if x>>1, then only reflection and  
1st  + 2nd order refractions 
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Van de Hulst, 1956 

Analytical solution of Maxwell equations - Lorenz-Mie theory, 1908 



Light scattering 
majority of light in forward scattering 

x=5  m=1.33 

x=10  m=1.33 
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1st – order
refraction

-3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3
parallel
polarisation

orthogonal
polarisation

reflection

2nd – order
refraction

Lorenz-Mie

x = πd/λ >> 1  

Lorenz-Mie and Geometrical Optics 

x=20  m=1.33 



Single-point size measurements 

Phase Doppler Anemometry (PDA) 
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Laser Doppler Anemometry (LDA) 
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MEASUREMENT PRINCIPLE: 
Doppler effect among incident and scattered light 
 

Laser Doppler Anemometry 

λ
c
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Laser Doppler Anemometry 



Doppler signals from tracer particles  (1-5 µm) 

ABC

A

C

B

20 

Laser Doppler Anemometry 



drawbacks 
Filo Caldo

t

Laser Doppler

t

random sampling 

HWA

t

LDA

ν

finite time 
broadening noise  

t ν

τt

δν
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Laser Doppler Anemometry 



Phase Doppler Anemometry 

Relation Particle Size - Phase Difference  

m=m1/m2  
λ=λo/m  

λ 

m1 
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d = particle diameter 
δ1-δ2 = ΔΦ = phase difference 
θ = scattering angle 

Different optical path 
Geometrical Optics: Snell Law 
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Spherical particles – single-point measurements 



  

λπβ mdxm p ⋅⋅==p⋅=ΔΦ β p=f(scattering angles) 
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Phase Doppler Anemometry 



An example: near wall turbulence + solid particles 

Particles    100 µm 
Tracers        20 µm 
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Phase Doppler Anemometry 

glass 

latex 

diameter (µm) 

Righetti & Romano, 2004 
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Phase Doppler Anemometry 
phase separated mean velocity 

velocity difference 
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Phase Doppler Anemometry 



Multi-point size measurements 

Global Phase Doppler (GPS) 
Interferometric Laser Imaging Droplet Sizing (ILIDS) 
Image Analysis Methods 
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Particle Image Velocimetry (PIV) 



Particle Image Velocimetry  
IMAGE ACQUISITION   Light Source, Optics, 

      Camera, Storage  
      

IMAGE PROCESSING   Cross-correlation  
      Tracking 
      Optical Flow 
     

IMAGE PRE-PROCESSING  Noise replace & Filters 
      Reflections replace 
      Mask determination 

 

IMAGE POST-PROCESSING  Vector Validation 
 

DATA POST-PROCESSING  Vortex Detection  
28 



IMAGING  ON  A  VIDEOCAMERA 
 

0

0

z
ZM =

Magnification  
factor 
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Particle Image Velocimetry  

Particle ≡ Intensity level (0-255) 



( ) ∫∫ ++= dxdyryrxFyxFrrR jiij ),(),(, 2121

Cross-correlation function (of light intensity levels)  

time t 
(image i) 

time t+Δt 
(image j) 
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Particle Image Velocimetry  



31 

Particle Image Velocimetry  

cross-correlation peak detection displacement & velocity 



drawbacks 

spatial resolution 

temporal resolution 

Particle Image Velocimetry 
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tracers & particles 

Maximum size ≈ ℓ      
Minimum size ≈ w        

ℓ 
w 

Maximum time ≈ T      
Minimum time ≈ Δt        

Δt T 

no particles ……. no party !! 



Propeller Wake: Re = 105-106  
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Particle Image Velocimetry 



Wall Turbulence: Re = 105, Reθ = 8000 

Image Acquisition Image Processing 
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Particle Image Velocimetry 



Damaschke et al. 2001) Figura 27 – Generazione delle immagini di una particella sferica sui vari piani focali.
 

Incident Light 

Particle 

Optical System 

Defocused Images In Focus Image 
(glare points) 

Focal Planes 

fringe system 

Multi-point size measurements 
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Konig et al. 1986 
Glover et al. 1995 
Maeda et al. 2000  
Damaschke et al. 2001, 2002 
Kobayashi et al. 2001 

GPS & ILIDS: principle 

d = particle diameter 
δ  = fringe spacing 
θ = scattering angle 



LASER 

Personal 
Computer 

High-speed 

CCD Camera 

Spray or 
Particles 

Imaged 

Region 

Polarizer 
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Multi-point size measurements 
GPS & ILIDS: practice 

+ velocity ? 



Optimal Fringe Contrast = Same Optical Intensity for Reflection and Refraction  

Scattering Angle Scattering Angle 

Solid Particles in Air (m=1.59) Water Droplets in Air (m=1.33) 
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Multi-point size measurements 
GPS & ILIDS: receiving optics 



reference image 

cross-correlation 
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GPS & ILIDS: particle identification 

Multi-point size measurements 

original image 

cross-correlation  



N
k

=
λ
1

FFT or corre lat ion of 
particle defocused images 
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Multi-point size measurements 
GPS & ILIDS: fringe spacing evaluation 

k = wavenumber 
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Multi-point size measurements 
GPS & ILIDS: image processing algorithm 



Gaussian sub-pixel interpolation on 
PDF of particle diameter 

+ 

correct bin size 

Particle diameter Particle diameter 

Particle diameter 41 

Multi-point size measurements 
GPS & ILIDS: size statistics 



t+Δt t 

cross- 
correlation 
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GPS & ILIDS + velocity 

Multi-point size measurements 



Conjugate Product 

Defocused 
Image 

Previous Image Buffer 

Cross-correlation 
Peak Detection 

Wave-number Spectrum 
Peak Detection 

Fringe  
Spacing 

         Particle 
Size 

Particle Velocity 
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GPS & ILIDS + velocity 

Multi-point size measurements 



Dynamical Range for Size Measurements > 100 

Geometrical Optics Limit                   πd/λ >> 1≈ 20                              dmin = 5 µm 
                                       

At least 2 observable fringes                                                                    dmin = 15 µm 
          2cos21
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GPS & ILIDS: limits 

Multi-point size measurements 



528 µm nd Maximum size 
96 µm nd Minimum size 

160 µm - 346 µm 149 µm - 350 µm Aver. ± Std. 

± 93 µm ± 100 µm Std. deviation 

253 µm 250 µm Average size 

Measured Company Bangs Styrene/2% 
VB/45-100mesh 

110 µm nd Maximum size 
58 µm nd Minimum size 

74 µm - 94 µm 75 µm - 90 µm Aver. ± Std. 
± 10 µm ± 8 µm Std. deviation 
84 µm 83 µm Average size 

Measured Company Bangs Styrene/2% 
VB/45-100mesh 

Example 1: tests on calibrated solid particles 

45 Error: 1% on mean, 3% on σ   

Multi-point sise measurements 
GPS & ILIDS 



Mean Diameter = 130 µm Std. Deviation = 60 µm 

Particle diameter 

Poissonian 

+ velocity 
46 

Multi-point size measurements 

Example 2: spray of water droplets in air 

GPS & ILIDS 



CYLINDRICAL 
LENS 

LASER 

TANK WITH WATER 
AND SODIUM 

CHLORIDE 

ANODE  
(PLATINUM WIRE) 

CATHODE  
(COPPER 

WIRE) 

       CAMERA 

SCATTERING 
ANGLE  

PRISM 
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Multi-point size measurements 

Example 3: micro air bubbles in water (wire electrolysis) 

GPS & ILIDS 

wire diameter 
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Multi-point size measurements 
GPS & ILIDS 

Example 4: Cavitation bubbles 

Lacagnina et al., 2011, in collaboration with CNR-INSEAN,  
Network of Excellence “Hydro-Testing Alliance” FP6 (2006-2010) 

comparison of the two cameras 
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Multi-point size measurements 
GPS & ILIDS 

Example 4: Cavitation bubbles 



  Shadow Imaging ILIDS 
Diametro medio 38.22 µm 37.17 µm 

Deviazione standard 5.25 µm 10.48 µm 
Diametro più probabile 36 µm 33 µm 
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Multi-point size measurements 
GPS & ILIDS: comparison 
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Multi-point size measurements 
GPS & ILIDS: drawbacks 

Spherical particles 
Low particle density  



Multi-point size measurements 

Advanced Image Analysis Methods 
  52 

Non-spherical particles 
High particle density 



Focal plane 

Camera +  
high level macro optics  

White screen 
or diffuser 

Particles 

Lamp 

Contour → Area → Size 
53 

Non-spherical particles –  
multi-point measurements 

Shadow Imaging 



1136 pixels = 4 mm (3.52 mm/pixel) 
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Shadow Imaging: calibration 

Non-spherical particles –  
multi-point measurements 

high spatial resolution but very small region 



55 

Shadow Imaging: image processing (high density) 

Non-spherical particles –  
multi-point measurements 
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Non-spherical particles –  
multi-point measurements 

Shadow Imaging: micro air bubbles in water (wire electrolysis) 

wire diameter 



-  Non-spherical particles are imaged as 
spherical 

-  Non-spherical particles are imaged as non-
spherical 

        SPATIAL RESOLUTION 
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Non-spherical particles –  
multi-point measurements 



Non-spherical particles –  
multi-point measurements 

•  Density 1.13-1.15 g/cm3 
•  Mean length L=320 µm 
•  Mean diameter d=24 µm 
•  Aspect ratio L/d=13.3 

Flow tracers: hollow glass spheres 
    Mean diameter 12 µm, neutrally buoyant 
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Example: synthetic plastic rod fibers (nylon) 



•  Turbulent pipe jet 
•  Reynolds numbers 3000-30000 
•  Stokes number ≈ 0.7 
•  Imaged region ≈ 11 cm 
•  Camera sensor 1024 pixel 
•  Spatial resolution ≈ 8 px/mm 
•  1 fiber length = 3 pixel 
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Non-spherical particles –  
multi-point measurements 
Low spatial resolution: fibers eqv to spheres 



NO FIBERS WITH FIBERS 

Single or multiple cameras 60 

Non-spherical particles –  
multi-point measurements 

Flow-particle phase discrimination 



61 
Median filter 5x5 attenuates seeding particles 

Non-spherical particles –  
multi-point measurements 

Flow-particle separation: spatial median filter Kiger & Pan, 2001 



Image Pre-processing 
Original  

Median Filter =  
ordering + 
medium value 
 

Laplacian Filter 

-1 -1 -1  

 -1 -1 -1 

8 -1  -1  
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Particle ≡ Intensity level (0-255) 

40 80 40  

40 40 80 
100 80  80  1 

1 

1 
1 1 

1 1 

1 

1 1 1 
1 
1 

1 
1 
1 

Median Filter = 1 

Median Filter = 20 
30 30 30  

30 30 30 
30 30  30  20 

20 

20 
10 20 

10 20 

20 

20 20 10 
20 
20 

20 
20 
10 

“peaked” particle 

“distributed” particle 
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Non-spherical particles –  
multi-point measurements 

Flow-particle separation: spatial median filter + thresholding 

Threshold is applied 
based on pixel 

intensity distribution 

Pixels belonging to fibers 
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Non-spherical particles –  
multi-point measurements 

Flow-particle separation: thresholding 

? which intensity 
threshold ? 



•  Separation error by artificial two-phase 
images: 
 1) Acquisition of tracer only and fiber only images 
 2) Separate processing and location+velocity results 
 3) Artificial multiphase image = tracer only+fiber only 
 4) Phase discrimination (median + thresholding) 
 5) Combined processing and location+velocity results 
 6) Comparison as a function of threshold 

 
•  PIV average error on whole field below 3% 
•  Fibers detection error below 0.1% 
•  Detected particles 99.8% 
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Non-spherical particles –  
multi-point measurements 

Flow-particle separation: validation 
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Non-spherical particles –  
multi-point measurements 
Flow-particle separation: validation location 

optimal  around 75 
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Non-spherical particles –  
multi-point measurements 
Flow-particle separation: validation velocity 

standard method = 

optimal around 75 



Kelvin-Helmholtz instability PIV: Image Acquisition  
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Turbulent jets 
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Turbulent jets 

PIV: 
mean field 

PIV  
instantaneous field 
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – effect on results 



Fibers give smoother behaviours 71 

Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – overall mean field 



Vertical velocity does not increase 72 

Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – overall mean field 



Turbulence enhancement within core  
region lower than spherical particles 
(Zoltani & Bicen, 1990)  
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – rms overall field 
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – rms overall field 

Reynolds stress attenuation  
in shear layers  



Higher slip-velocity,  
faster recovery than spheres  75 

Non-spherical particles –  
multi-point measurements 

Example: turbulent jet with fibers – fluid & fiber mean fields 



Fibers feature inertial effects 
as the jet spreads differently 
from spherical particles 
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet laden with fibers – fiber mean field 
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet laden with fibers – fiber rms field 

Fibers increase turbulence  
in comparison to fluid and 
spherical particles 
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Non-spherical particles –  
multi-point measurements 

Example: turbulent jet laden with fibers – fiber concentration 

As in Krochak et al. 2010 
(Poiseuille flow), fibers  
concentrate in low shear regions 



79 

•  Backward facing step 
•  Reynolds numbers 15000 
•  Stokes number ≈ 0.5 
•  Imaged region ≈ 1 cm 
•  Camera sensor 1024 pixel 
•  Spatial resolution ≈ 100 px/mm 
•  1 fiber length ≈ 30 pixel 

High spatial resolution: fibers NOT eqv to spheres 

Non-spherical particles –  
multi-point measurements 
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Non-spherical particles –  
multi-point measurements 
High spatial resolution              orientation 

L=fiber length 
D=fiber diameter 



1 m/s

1 m/s

1 m/s

1 m/s1 m/s

1 m/s

Fibers orientation detected with 
 an ellipse-fitting algorithm 
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Non-spherical particles –  
multi-point measurements 
High spatial resolution              orientation 

Dearing et al., 2015 
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Non-spherical particles –  
multi-point measurements 
High spatial resolution              orientation 

 1) Image threshold + median filter 3×3 
 2) Ellipses labelled as “fibers” if  
  L/d>1.5 and L>9dtracer 
 3) Fibers subtracted from images  
  → HOLES 
 4) Tracer processed with PIV 
 5) Fibers processed with  
  Particle Tracking 
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Non-spherical particles –  
multi-point measurements 
High spatial resolution              orientation 

Fluid 

Simultaneous  
Fiber/Fluid Data 

Particles 
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Backward facing step 

PIV: Image Acquisition  

PIV: mean field  
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Backward facing step 
PIV: mean and rms fields  
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Non-spherical particles –  
multi-point measurements 

Example: BFS with fibers – overall mean field 

no noticeable effect  
on the mean field upstream 

downstream 
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Non-spherical particles –  
multi-point measurements 

Example: BFS with fibers – overall rms field 

slight increase in turbulence 
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Non-spherical particles –  
multi-point measurements 

Example: BFS with fibers – fiber orientation 

upstream 

agreement with Poiseuille flow data 
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Non-spherical particles –  
multi-point measurements 

Example: BFS with fibers – fiber orientation 

agreement with upstream flow data 
correlation with with local velocity ? 
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Non-spherical particles –  
multi-point measurements 

Example: BFS with fibers – fiber orientation 

fibers not aligned perfectly with local velocity, 
rather they align with plane of maximum shear 

β   ϕ 



Image Pre-processing 
       Large scale noise              
 
Avoiding light reflections  

Original  

Minimum at each pixel Average at each pixel 

Original - Minimum Original - Average 
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Image Pre-processing 

Another example in a very noisy +  
geometrically complex test section  

Original  

Minimum 

Average 

Original - Minimum 

Original - Average 
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Image Pre-processing 
    Automatic 
determination  
   of a mask 

     Std Dev.  
Light intensity 

 Threshold  
on Std Dev. 
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- Tracers & particles 
 Use of optical techniques: the problem of tracers 
 Light scattering by particles: position and distance 
 Low concentration and size: follow the fluid without disturbing 

 
- Single-point measurements  

 Spherical particles: Phase Doppler 
 Non-spherical particles: Shadow Imaging 

 
- Multi-point measurements 

 Spherical particles: Global Phase Doppler & Interferometry 
 Non-spherical particles: Shadow Imaging & Image Analysis 
 Low spatial resolution: phase discrimination complex 
 High spatial resolution: orientation 
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Remarks 



Italian Foodscapes 
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Italian Foodscapes 
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