COST - Fiber suspension flow modeling Martin Sommerfeld & Cristian Marchioli

Regular and irregular non-spherical particles in laminar and turbulent flows

Martin Luther University, Halle-Wittenberg May 2015

Experimental techniques for two phase flows

Giampaolo Romano

Dept. Mechanical & Aerospace Engineering University "La Sapienza", Roma, ITALY giampaolo.romano@uniroma1.it

References

- Romano & Zincone, Journal of Vizualization, 2000
- Righetti & Romano, Journal Fluid Mechanics, 2004
- Lavoie et al., Experiments in Fluids, 2007
- Cagnoli & Romano, Journal of Volcanology & Geot. Res., 2010
- Lacagnina et al., Experiments in Fluids, 2011
- Capone, Soldati & Romano, Experiments in Fluids, 2014
- Capone & Romano, Physics of Fluids, 2015

Overview

<u>3 Lectures:</u>

- Two phase flows, optical techniques & flow tracers
- Single & multi-point measurements
- Measurements for non spherical particles

Use of optical techniques: the problem of tracers Light scattering by particles Single point and multipoint techniques Laser and Phase Doppler Anemometry Imaging techniques: Particle Image Velocimetry & Global Phase Doppler Discrimination and phase separation in acquired images Two-phase flow measurements in shear layers

Why to measure in two-phase flows

<u>Why</u>: drag reduction, noise control, sedimentation, pollution and environmental phenomena, fiber suspension, sprays and other industrial applications, and Dolphins play with bubbles !!!

What to measure in two-phase flows

<u>What:</u> velocity components, concentration, size, cross-correlation among them SIMULTANEOUSLY FOR EACH PHASE !!!

FLUID-PARTICLE COUPLING

PARTICLE-PARTICLE COUPLING

ADDITIONAL EFFECTS (rotation, stretching, shear)

Fluid

Fluid

Intrusive vs non-intrusive methods

INTRUSIVE: Grids, WMS (Wire Mesh Sensors), = good temporal resolution, very low spatial resolution, OK for industrial applications

<u>**NON-INTRUSIVE</u>**: capacitive and magnetic sensors, ultrasound sensors, ... = sufficient temporal resolution, low spatial resolution \Rightarrow <u>OPTICAL TECHNIQUES</u></u>

the problem of tracers and light scattering

Do we really measure single-phase flows in optical techniques?

Flow Tracers

Tracer particles

Basset, Boussinesque, Oseen (BBO) equation

$$m_{P}\left(\frac{D\underline{u}_{P}}{Dt}\right) = \left(m_{P} - m_{f}\right)g\underline{k} + m_{f}\frac{D\underline{u}_{f}}{Dt} - \frac{1}{2}m_{f}\left[\left(\frac{D\underline{u}_{P}}{Dt} - \frac{D\underline{u}_{f}}{Dt}\right) - \frac{1}{10}\left(\frac{d}{2}\right)^{2}\nabla^{2}\underline{u}_{f}\right] - 6\pi\mu\left(\frac{d}{2}\right)\left[\left(\underline{u}_{P} - \underline{u}_{f}\right) - \frac{1}{6}\left(\frac{d}{2}\right)^{2}\nabla^{2}\underline{u}_{f}\right] - \frac{3}{2}d^{2}\sqrt{\pi\rho_{f}\mu}\int_{t_{0}}^{t}\frac{1}{(t-\tau)^{1/2}}\frac{d}{d\tau}\left(\underline{u}_{P} - \underline{u}_{f}\right)d\tau$$

 $u_f = A e^{i\omega t}$

$$u_{\rm p} = BAe^{i\omega t} + \varphi$$

8

Tracer particles

if $\rho_p \gg \rho_f$

$$\frac{du_p}{dt} = a' \left(u_f - u_p \right) \qquad \qquad a' = \frac{18\mu}{\rho_p d^2}$$

Stokes frequency

9

$$\varphi = \operatorname{arctg}\left(\frac{\left(\frac{-\omega a'}{a'^{2} + \omega^{2}}\right)}{1 - \left(\frac{\omega^{2}}{a'^{2} + \omega^{2}}\right)}\right) = \operatorname{arctg}\left(\frac{-\omega a'}{a'^{2}}\right) = \operatorname{arctg}\left(\frac{-\omega}{a'}\right) = \begin{cases} \omega << a' & \varphi = 0 \quad \text{no effect} \\ \omega >> a' & \varphi = -\frac{\pi}{2} \end{cases}$$

$$B = \left[1 + \frac{\omega^{4}}{\left(a^{'2} + \omega^{2}\right)^{2}} - \frac{2\omega^{2}}{\left(a^{'2} + \omega^{2}\right)} + \frac{\omega^{2}a^{'2}}{\left(a^{'2} + \omega^{2}\right)}\right]^{\frac{1}{2}} = \left[\frac{\left(a^{'2} + \omega^{2}\right) + \omega^{4} - 2\omega^{2}a^{'2} - 2\omega^{4} + \omega^{2}a^{'2}}{\left(a^{'2} + \omega^{2}\right)^{2}}\right]^{\frac{1}{2}} = \frac{a^{'}\left(a^{'2} + \omega^{2}\right)^{\frac{1}{2}}}{\left(a^{'2} + \omega^{2}\right)^{\frac{1}{2}}} = \frac{a^{'}\left(a^{'2}$$

Effect of tracers in PIV

Effect of tracers in PIV

Non-intrusive optical methods for measuring <u>particle size</u> (in addition to flow tracers)

Spherical vs non spherical particles

spherical

<u>Single-point methods:</u> Phase Doppler Anemometry (PDA)

<u>Multi-point methods</u>: Global Phase Doppler (GPS) or Interferometric Laser Imaging Droplet Sizing (ILIDS), Image Analysis Methods

Durst et al. 1976, Konig et al. 1986, Kiger & Pan 2000

non-spherical

Single-point methods: PDA: not working

Multi-point methods: ILIDS: not working, Image Analysis Methods: OK

Parsa et al. 2011, Dearing et al. 2013

Light scattering

Complex for spherical particles Very complex for non-spherical particles

Light scattering

Analytical solution of Maxwell equations - Lorenz-Mie theory, 1908

$$x = \pi d/\lambda$$

d = particle diameter $\lambda =$ light wavelength

if x >> 1, then only reflection and $1^{st} + 2^{nd}$ order refractions

Van de Hulst, 1956

Light scattering

majority of light in forward scattering

Lorenz-Mie and Geometrical Optics

$$x = \pi d/\lambda >> 1$$

x=20 m=1.33

16

Single-point size measurements

Phase Doppler Anemometry (PDA)

Laser Doppler Anemometry (LDA)

MEASUREMENT PRINCIPLE:

Doppler effect among incident and scattered light

interference fringes

 $\Delta \varphi = 2\pi \frac{\Delta l}{\lambda} = 2\pi \frac{2y \operatorname{sen} \frac{\vartheta}{2}}{2}$ $\Delta l = 2y \operatorname{sen} \frac{\vartheta}{2}$

19

Doppler signals from tracer particles $(1-5 \mu m)$

Spherical particles – single-point measurements

Relation Particle Size - Phase Difference

Different optical path Geometrical Optics: Snell Law

$$\left(\delta_1 - \delta_0\right) = \frac{2\pi d}{\lambda} \left(\sin\frac{\theta}{2} + \sqrt{m^2 + 1 - 2m\cos\frac{\theta}{2}}\right)$$

d = particle diameter $\delta_1 - \delta_2 = \Delta \Phi =$ phase difference $\theta =$ scattering angle

$$\Delta \Phi = \beta \cdot p \qquad \beta = xm = \pi \cdot d_p \cdot m / \lambda$$

p=f(scattering angles)

An example: near wall turbulence + solid particles

overall mean velocity

phase separated mean velocity

1.2 velocity difference 1 ο d 0.8 0.6 *n/(d∩-J∩) 0.4 d 00 O o <mark>08</mark> -0.2 • acquisizione 'vetro 1' ο -0.4 o acquisizione 'vetro 2' -0.6 10 100 1000 **y**+

25

turbulence intensity

Multi-point size measurements

Global Phase Doppler (GPS) Interferometric Laser Imaging Droplet Sizing (ILIDS) Image Analysis Methods

Particle Image Velocimetry (PIV)

	IMAGE ACQUISITION	Light Source, Optics, Camera, Storage
	IMAGE PROCESSING	Cross-correlation Tracking Optical Flow
	IMAGE PRE-PROCESSING	Noise replace & Filters Reflections replace Mask determination
	IMAGE POST-PROCESSING	Vector Validation
	DATA POST-PROCESSING	Vortex Detection

IMAGING ON A VIDEOCAMERA

Magnification factor

$$M = \frac{Z_0}{Z_0}$$

Particle = Intensity level (0-255)

<u>Cross-correlation function (of light intensity levels)</u>

$$R_{ij}(r_1, r_2) = \iint F_i(x, y) F_j(x + r_1, y + r_2) dx dy$$

time *t* (image *i*)

time $t+\Delta t$ (image j)

cross-correlation

peak detection

displacement & velocity

drawbacks

Propeller Wake: $Re = 10^5 - 10^6$

33

Wall Turbulence: $Re = 10^5$, $Re_{\theta} = 8000$

Image Acquisition

Image Processing

Multi-point size measurements

GPS & ILIDS: principle

Multi-point size measurements

GPS & ILIDS: practice

GPS & ILIDS: receiving optics

Optimal Fringe Contrast = Same Optical Intensity for Reflection and Refraction

Solid Particles in Air (m=1.59)

Water Droplets in Air (m=1.33)

GPS & ILIDS: particle identification

GPS & ILIDS: fringe spacing evaluation

FFT or correlation of particle defocused images

k = wavenumber

GPS & ILIDS: image processing algorithm

GPS & ILIDS: size statistics

Gaussian sub-pixel interpolation on PDF of particle diameter

+

correct bin size

41

GPS & ILIDS + velocity

600 ⁻⁻

`100 [`]200 [`]300 [`]400

. 500 42

GPS & ILIDS + velocity

GPS & ILIDS: limits

 $\pi d/\lambda >> 1 \approx 20$

At least 2 observable fringes

Geometrical Optics Limit

$$d_{\min} = \frac{K}{\delta_{\max}} = \frac{4\lambda \cdot L_1}{D} \frac{1}{\cos\frac{\theta}{2} + \frac{m\sin\frac{\theta}{2}}{\sqrt{m^2 + 1 - 2m\cos\frac{\theta}{2}}}}$$

= 5 µm

PSD Peak in the Origin

 $k^* > 2$

JOWER LIMIT

Nyquist criterion (to avoid aliasing over frequency N/2) (at least 1 pixel per fringe)

$$d_{\max} = \frac{K}{\delta_{\min}} = \frac{Kk_{x\max}}{2\pi} = \frac{K}{2\Delta x} = \frac{K}{4}$$

$$d_{\rm max} = 600 \ \mu {\rm m}$$

44

Dynamical Range for Size Measurements > 100

GPS & ILIDS

Example 1: tests on calibrated solid particles

Bangs Styrene/2% VB/45-100mesh	Company	Measured	
Average size	83 µm	84 µm	-
Std. deviation	± 8 µm	± 10 µm	
Aver. ± Std.	75 µт - 90 µт 74 µт - 94 µт		
Minimum size	nd	58 µm	
Maximum size	nd	110 µm	

Bangs Styrene/2% VB/45-100mesh	Company	Measured
Average size	250 µm	253 µm
Std. deviation	± 100 µm	±93 μm
Aver. ± Std.	149 µm - 350 µm	160 μm - 346 μm
Minimum size	nd	96 µm
Maximum size	nd	528 µm

Error: 1% on mean, 3% on σ

GPS & ILIDS

Example 2: spray of water droplets in air

GPS & ILIDS

Example 3: micro air bubbles in water (wire electrolysis)

GPS & ILIDS

Example 4: Cavitation bubbles

Lacagnina et al., 2011, in collaboration with CNR-INSEAN, Network of Excellence "Hydro-Testing Alliance" FP6 (2006-2010)

Test Section

comparison of the two cameras

GPS & ILIDS

Example 4: Cavitation bubbles

GPS & ILIDS: comparison PDF dei diametri con risoluzione 1 µm 0.09 0.08 0.07 0.06 0.05 Ë 0.04 0.03 0.02 0.01 البغر الم ---Π 20 30 50 40 60 70 Diametro (µm)

	Shadow Imaging			
Diametro medio	38.22 µm	37.17 µm		
Deviazione standard	5.25 µm	10.48 µm		
Diametro più probabile	36 µm	33 µm		

GPS & ILIDS: drawbacks

Spherical particles Low particle density

Non-spherical particles High particle density

Advanced Image Analysis Methods

Shadow Imaging

 $\textit{Contour} \rightarrow \textit{Area} \rightarrow \textit{Size}$

Shadow Imaging: calibration

1136 pixels = 4 mm (3.52 mm/pixel)

Shadow Imaging: image processing (high density)

Shadow Imaging: micro air bubbles in water (wire electrolysis)

- Non-spherical particles are imaged as spherical
- Non-spherical particles are imaged as nonspherical

SPATIAL RESOLUTION

Example: synthetic plastic rod fibers (nylon)

- Density 1.13-1.15 g/cm3
- Mean length L=320 µm
- Mean diameter d=24 μm
- Aspect ratio L/d=13.3

Flow tracers: hollow glass spheres Mean diameter 12 µm, neutrally buoyant

Low spatial resolution: fibers eqv to spheres

- <u>Turbulent pipe jet</u>
- Reynolds numbers 3000-30000
- Stokes number ≈ 0.7
- Imaged region $\approx 11 \text{ cm}$
- Camera sensor 1024 pixel
- Spatial resolution $\approx 8 \text{ px/mm}$
- 1 fiber length = 3 pixel

Flow-particle phase discrimination

WITH FIBERS

NO FIBERS

Single or multiple cameras

Non-spherical particles – **multi-point measurements** Flow-particle separation: spatial median filter

Kiger & Pan, 2001

Median filter 5x5 attenuates seeding particles

Image Pre-processing

-1

-1

-1

Flow-particle separation: spatial median filter + thresholding

Fig. 4 PDF of light intensity at each pixel for single-phase data, compared to fiber-laden case before (at the *top*) and after (at the *bot-tom*) median filter

Flow-particle separation: thresholding

which intensity threshold ?

Fig. 5 Probability ratio of a pixel featuring an intensity level brighter than a certain value. Artificial data are discussed in Sect. 3.1

Flow-particle separation: validation

- Separation error by artificial two-phase images:
 - 1) Acquisition of tracer only and fiber only images
 - 2) Separate processing and location+velocity results
 - 3) Artificial multiphase image = tracer only+fiber only
 - 4) Phase discrimination (median + thresholding)
 - 5) Combined processing and location+velocity results
 - 6) Comparison as a function of threshold
- PIV average error on whole field below 3%
- Fibers detection error below 0.1%
- Detected particles 99.8%

Flow-particle separation: validation location

Flow-particle separation: validation velocity

Turbulent jets

Kelvin-Helmholtz instability

PIV: Image Acquisition

Turbulent jets

PIV instantaneous field

PIV: mean field

Example: turbulent jet with fibers – effect on results

Example: turbulent jet with fibers – overall mean field

Fibers give smoother behaviours

Example: turbulent jet with fibers – overall mean field

Vertical velocity does not increase
Example: turbulent jet with fibers – rms overall field

Turbulence enhancement within core region lower than spherical particles (Zoltani & Bicen, 1990)

Example: turbulent jet with fibers – rms overall field

Reynolds stress attenuation in shear layers

Example: turbulent jet with fibers – fluid & fiber mean fields

Higher slip-velocity, faster recovery than spheres

Example: turbulent jet laden with fibers – fiber mean field

Fibers feature inertial effects as the jet spreads differently from spherical particles

Example: turbulent jet laden with fibers – fiber rms field

Fibers increase turbulence in comparison to fluid and spherical particles

Example: turbulent jet laden with fibers – fiber concentration

As in Krochak *et al.* 2010 (Poiseuille flow), fibers concentrate in low shear regions

High spatial resolution: fibers NOT eqv to spheres

- Backward facing step
- Reynolds numbers 15000
- Stokes number ≈ 0.5
- Imaged region $\approx 1 \text{ cm}$
- Camera sensor 1024 pixel
- Spatial resolution $\approx 100 \text{ px/mm}$
- 1 fiber length ≈ 30 pixel

High spatial resolution

L=fiber length D=fiber diameter

orientation

Fibers orientation detected with an ellipse-fitting algorithm Dearing et al., 2015

High spatial resolution

 Image threshold + median filter 3×3
Ellipses labelled as "fibers" if L/d>1.5 and L>9d_{tracer}
Fibers subtracted from images → <u>HOLES</u>
Tracer processed with PIV
Fibers processed with Particle Tracking

orientation

High spatial resolution

orientation

Backward facing step

PIV: Image Acquisition

PIV: mean field

Backward facing step

PIV: mean and rms fields

Figure 6. Single phase flow, mean streamwise velocity compared to Kasagi and Matsunaga [23] data downstream of the step.

Example: BFS with fibers – overall mean field

slight increase in turbulence

87

agreement with Poiseuille flow data

Non-spherical particles – **multi-point measurements** Example: BFS with fibers – fiber orientation

agreement with upstream flow data correlation with with local velocity ?

90

fibers not aligned perfectly with local velocity, rather they align with plane of maximum shear

Image Pre-processing

Large scale noise Avoiding light reflections

Image Pre-processing

Another example in a very noisy + geometrically complex test section

Original - Minimum

Original - Average

92

Image Pre-processing

Automatic letermination of a mask

Std Dev. Light intensity

Threshold on Std Dev.

Remarks

- Tracers & particles

Use of optical techniques: the problem of tracers Light scattering by particles: position and distance Low concentration and size: follow the fluid without disturbing

-Single-point measurements

Spherical particles: Phase Doppler Non-spherical particles: Shadow Imaging

- Multi-point measurements

Spherical particles: Global Phase Doppler & Interferometry Non-spherical particles: Shadow Imaging & Image Analysis Low spatial resolution: phase discrimination complex High spatial resolution: orientation

Italian Foodscapes

Italian Foodscapes

