

COST Training Schoool (Action FP1005)

Martin Luther Universität, Halle-Wittenberg, May 27-29, 2015

LECTURE 1: SETTING THE STAGE

CRISTIAN MARCHIOLI

DEPT. ELECTRICAL, MANAGEMENT AND MECHANICAL ENGINEERING, UNIVERSITY OF UDINE (ITALY)

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Project supported by COST - European Cooperation in Science and Technology

- 1.1 OVERVIEW OF APPLICATIONS INVOLVING NON-SPHERICAL PARTICLES
- **1.2 CLASSIFICATION OF NON-SPHERICAL PARTICLES**
- 1.3 SIZE AND SHAPE OF NON-SPHERICAL PARTICLES
 - 1.3.1 DIAMETERS
 - 1.3.2 SHAPE FACTORS
- 1.4 DRAG OF OF NON-SPHERICAL PARTICLES (INTRO)
 - 1.4.1 SHAPE EFFECTS
 - 1.4.2 STOKES VS NETWON REGIME
 - 1.4.3 CORRECTION FACTORS

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

- FIBER SUSPENSIONS (PULP & PAPER INDUSTRY)
- PROCESSING OF INDUSTRIAL COLLOIDS
- PNEUMATIC TRANSPORT OF POWDERS (PROCESS INDUSTRY)
- PULVERIZED BIOMASS PARTICLES IN INDUSTRIAL BURNERS
- SPREAD OF INK PARTICLES (PRINTING INDUSTRY)

ENVIRONMENTAL SYSTEMS

- AIRBORNE PARTICLES AND AEROSOLS IN THE ATMOSPHERE
- MICRO-ORGANISMS (E.G. PLANKTON, POLLUTANTS) IN THE OCEAN
- MARINE SNOW

BIOLOGICAL FLOWS

- TRANSPORT OF BLOOD CELLS IN VEINS
- LUNG AEROSOL DYNAMICS

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• FIBER SUSPENSIONS (PULP & PAPER INDUSTRY)

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• FIBER SUSPENSIONS (PULP & PAPER INDUSTRY)

CELLULOSE FIBERS

C=0.5%-w

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• FIBER SUSPENSIONS (PULP & PAPER INDUSTRY)

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• PROCESSING OF INDUSTRIAL COLLOIDS

PAINTS, ADHESIVES, INKS, LUBRICANTS, COATINGS, COSMETICS, PHARMACEUTICALS AND EVEN ELECTRONIC DISPLAYS

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• PROCESSING OF INDUSTRIAL COLLOIDS

PAINTS, ADHESIVES, INKS, LUBRICANTS, COATINGS, COSMETICS, PHARMACEUTICALS AND EVEN ELECTRONIC DISPLAYS

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• PNEUMATIC TRANSPORT OF POWDERS (PROCESS INDUSTRY)

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• PULVERIZED BIOMASS PARTICLES IN INDUSTRIAL BURNERS

BIOMASS AND CHAR PARTICLES AT VARIOUS REACTION CONDITIONS FROM: UMEKI ET AL., IND ENG CHEM RES (2012)

Project supported by COST - European Cooperation in Science and Technology

INDUSTRIAL APPLICATIONS

• SPREAD OF INK PARTICLES (PRINTING INDUSTRY)

TONED CARRIER BEAD

Project supported by COST - European Cooperation in Science and Technology

ENVIRONMENTAL SYSTEMS

• AIRBORNE PARTICLES AND AEROSOLS IN THE ATMOSPHERE

SIZE RANGE: 0.001 MM (MOLECULAR CLUSTER) TO 100 MM (SMALL RAINDROP)

PICTURES COURTESY OF PROF. G. HABIB IIT DELHI

Project supported by COST - European Cooperation in Science and Technology

ENVIRONMENTAL SYSTEMS

• AIRBORNE PARTICLES AND AEROSOLS IN THE ATMOSPHERE

INDIRECT EFFECT OF ATMOSPHERIC AEROSOLS: SHIP TRACKS VISIBLE IN THE CLOUDS

Project supported by COST - European Cooperation in Science and Technology

ENVIRONMENTAL SYSTEMS

• MICRO-ORGANISMS (E.G. PLANKTON, POLLUTANTS) IN THE OCEAN

PHYTOPLANKTON BLOOM (BAY OF BISCAY, 2004)

Project supported by COST - European Cooperation in Science and Technology

ENVIRONMENTAL SYSTEMS

• MARINE SNOW

PICTURE: H. P. GROSSART, IGB, LEIBNIZ-INSTITUTE OF FRESHWATER ECOLOGY AND INLAND FISHERIES

Project supported by COST - European Cooperation in Science and Technology

BIOLOGICAL FLOWS

• TRANSPORT OF BLOOD CELLS IN VEINS

Project supported by COST - European Cooperation in Science and Technology

BIOLOGICAL FLOWS

• TRANSPORT OF BLOOD CELLS IN VEINS

EXAMPLE OF NUMERICALLY – SIMULATED (IBM-LBM) DENSE SUSPENSION OF BLOOD CELLS IN PERIODIC FLOW DOMAIN (FROM: SHARDT & DERKSEN, INT J MULTIPHASE FLOW, 2012)

Project supported by COST - European Cooperation in Science and Technology

BIOLOGICAL FLOWS

• LUNG AEROSOL DYNAMICS

DEPOSITION IN TRIPLE BIFURCATION LUNG AIRWAY MODEL (ZHANG ET AL., J AEROSOL SCI, 2002)

CLASSIFICATION OF NON-SPHERICAL PARTICLES*

roject supported by COST - European cooperation in Science and Technology

Non-spherical

- Regular particles
 - Cube
 - Disc
 - Cylinder
 - Tetrahedral
 - Ellipsoid

Irregular particles

- Defined by product
 - Agricultural products (straw, grain, etc)
 - Blood cells
 - Maple leaf
 - More...
- Defined by production method
 - Grinding
 - Chipping
 - Spray Drying
 - More…
- Complex shapes
 - Snow flakes
 - Black liquor droplets
 - Agglomerates
 - More...

Spherical

- Perfectly smooth spheres
- Roughened spheres
 - ex golf balls

* FROM MANDØ ET AL. PROC. 6TH INT. CONFERENCE ON MULTIPHASE FLOWS (ICMF2007)

CLASSIFICATION OF NON-SPHERICAL PARTICLES

	*	*	*.	
*			*	l
	*		**	l

NOTE: CHALLENGES WITH IRREGULAR NON-SPHERICAL PARTICLES

- MODEL ALL RELEVANT FORCES ACTING ON PARTICLES:
 - CORRELATIONS FOR AERODYNAMIC
 COEFFICIENTS CURRENTLY BASED
 ON STATISTICAL DISTRIBUTIONS
 - NO MEASURE AVAILABLE FOR SHEAR-INDUCED AND ROTATION-INDUCED LIFT
- MODEL WALL-COLLISION:

- Quartz particles
- NEED TO 'CONVERT' PARTICLES INTO EQUIVALENT SPHERES
- NEED TO OBTAIN STATISTICAL MEASURES OF RESTITUTION AND FRICTION COEFFICIENTS
- HEAVILY DEPENDENT ON AVAILABILITY OF ACCURATE EXPERIMENTAL MEASUREMENTS OR PARTICLE-LEVEL DIRECT SIMULATIONS

HOW TO DEFINE SIZE AND SHAPE OF NON-SPHERICAL PARTICLES?

Project supported by COST - European Cooperation in Science and Technology

COMMON DIAMETER DEFINITIONS *

Aerodynamic/drag diameter	Diameter of a sphere of unity density with the same terminal velocity as the particle
Stokes diameter	Diameter of a sphere of same density and the same terminal velocity as the particle
Projected area diameter	Diameter of a circle having the same area as the projection of the particle
Ferets diameter	The mean value of the distance between pairs of parallel tangents to the projected outline of the particle
Martins diameter	The mean chord length of the projected outline of the particle
Area equivalent diameter	Diameter of a sphere having the same surface area as the particle
Volume equivalent diameter	Diameter of a sphere having the same volume
Sieve/mesh diameter	as the particle The width of the minimum square aperture through which the particle will pass
Laser diffraction diameter	Diameter is calculated according to the Mie or Fraunhofer diffraction theory

* FROM MANDØ & ROSENDHAL, POWDER TECHNOLOGY 202 (2010) 1-13

Laboratory

University of Udine

THE AERODYNAMIC DIAMETER IS ALWAYS LARGER THAN THE STOKES'S EQUIVALENT DIAMETER

How to Define Size and Shape of Non-Spherical Particles?

Project supported by COST - European Cooperation in Science and Technology

- COMMON SHAPE FACTORS
 - VOLUMETRIC SHAPE FACTOR
 - COREY SHAPE FACTOR

HOW TO DEFINE SIZE AND SHAPE OF NON-SPHERICAL PARTICLES?

Project supported by COST - European Cooperation in Science and Technology

- COMMON SHAPE FACTORS
 - VOLUMETRIC SHAPE FACTOR
 - COREY SHAPE FACTOR

IN MANY ENGINEERING HANDBOOKS, DRAG IS ESTIMATED USING CORRELATIONS FOR SPHERICAL PARTICLES AND CORRECTED FOR NON-SPHERICAL PARTICLES BASED ON SPHERICITY

GOOD SHAPE FACTORS SHOULD CORRELATE WELL WITH THE PARTICLE'S TERMINAL VELOCITY

PROBLEM: A CYLINDER AND A DISC WITH THE SAME SPHERICITY HAVE DIFFERENT TERMINAL VELOCITY!

HOW TO DEFINE SIZE AND SHAPE OF NON-SPHERICAL PARTICLES?

Project supported by COST - European Cooperation in Science and Technology

CONSIDER FOR INSTANCE A CYLINDRICAL PARTICLE:

Project supported by COST - European Cooperation in Science and Technology

WHY DO I BOTHER?

BECAUSE IN THE LITERATURE:

OR

WHERE:

$$\operatorname{Re}_{p} = \frac{u_{rel}d_{p}}{v}$$

PARTICLE REYNOLDS NUMBER

STOKES REGIME: EXACT LIMITING AND APPROXIMATE SOLUTIONS FOR THE DRAG ON SPHEROIDS EXIST AT CREEPING FLOW CONDITIONS

D.

 $(Re_{p} > 100)$

REGIME

 $(0.1 < \text{Re}_{p} < 100)$

LLP

B.

NEWTON REGIME: "EMPIRICAL" CORRELATIONS FROM EXP. (WEN & YU) OR SIM. (E.G. LOTH 2008, SOMMERFELD 2009, VAN WACHEM 2012)

DRAG COEFFICIENT FOR NON-SPHERICAL PARTICLES

Let's keep it simple: $C^{}_{\rm D}$ for spheroids in creeping flow

$$C_{\rm D}(\lambda, \operatorname{Re}_{\rm p} \rightarrow 0) = C_{\rm D}(\operatorname{Re}_{\rm p} \rightarrow 0) \cdot f_{\lambda}$$

$$f_{\lambda} = \frac{F_{D}(\lambda, Re_{p} \rightarrow 0)}{3\pi d_{p}\mu_{f}u_{rel}}$$

SHAPE	$f_{\lambda\parallel}$	$\mathbf{f}_{\lambda\perp}$
OBLATE EXACT (λ<1)	$\frac{(4/3)\lambda^{-1/3}(1-\lambda^2)}{\lambda+\frac{(1-2\lambda^2)\cos^{-1}\lambda}{\sqrt{1-\lambda^2}}}$	$\frac{(8/3)\lambda^{-1/3}(\lambda^2-1)}{\lambda-\frac{(3-2\lambda^2)\cos^{-1}\lambda}{\sqrt{1-\lambda^2}}}$
PROLATE EXACT (λ>1)	$\frac{(4/3)\lambda^{-1/3}(1-\lambda^2)}{\lambda - \frac{(2\lambda^2 - 1)\ln(\lambda + \sqrt{\lambda^2 - 1})}{\sqrt{\lambda^2 - 1}}}$	$\frac{(8/3)\lambda^{-1/3}(\lambda^2-1)}{\lambda + \frac{(2\lambda^2-3)\ln(\lambda+\sqrt{\lambda^2-1})}{\sqrt{\lambda^2-1}}}$

DRAG COEFFICIENT FOR NON-SPHERICAL PARTICLES

Project supported by COST - European Cooperation in Science and Technology

FROM AN ENGINEERING POINT OF VIEW:

$$C_D = f(\operatorname{Re}_p, \operatorname{shape})$$

COULD BE ACCEPTABLE (ENGINEERS LIKE IT EASY ...)

BUT A COMPLETE DESCRIPTION OF THE DRAG COEFF. FOR A NON-SPHERICAL PARTICLE WOULD REQUIRE:

 $C_D = f(\text{Re}_p, \text{shape, orientation})$

THIS REQUIRES:

- AN EXPRESSION TAKING INTO ACCOUNT ALL POSSIBLE INCLINATION ANGLES FOR A GIVEN SHAPE AND $RE_{\rm P}$
- MODELLING PARTICLE TRANSLATION, BUT ALSO ROTATION (SEE LECTURE 2 ON WEDNESDAY MORNING)

LESSONS LEARNED

- L1. NON-SPHERICAL PARTICLES ARE UBIQUITOUS IN INDUSTRY AND NATURE
- L2. PARTICLES WITH REGULAR SHAPE ARE MATHEMATICALLY TREATABLE AND EXACT OR APPROXIMATE SOLUTIONS ARE AVAILABLE FOR PARTICULAR FLOW CONDITIONS
- L3. SHAPE FACTORS ARE ESPECIALLY SUITED FOR PARTICLES WITH IRREGULAR SHAPE
- L4. NON-SPHERICAL PARTICLES REQUIRE A MULTI-PARAMETER DESCRIPTION

REFERENCES

- R1. HILTON JE, CLEARY PW, CHEM ENG SCI, VOL 66 (2011), PP 231-240
- R2. LOTH E, POWD TECH, VOL 182 (2008), PP 342-353
- R3. LUNDELL F, SODERBERG LD, ALFREDSSON PH, ANNU REV FLUID MECH, VOL 43 (2011), PP 195-217
- R4. MANDØ M, ROSENDAHL L, POWD TECH, VOL 202 (2010), PP 1-13
- R5. MANDØ M, YIN C, SØRENSEN H, ROSENDAHL L, PROC. 6TH INT. CONFERENCE ON MULTIPHASE FLOWS (ICMF2007)
- R6. SHARDT O, DERKSEN JJ, INT J MULTIPHASE FLOW, VOL 47 (2012), PP 25–36
- R7. SUI Y, CHEW YT, ROY P, CHENG YP, LOW HT, PHYS FLUIDS, VOL 20 (2008), PP 112106
- R8. Umeki K, Kirtania K, Chen L, Bhattacharya S, Ind Eng Chem Res vol 51 (2012), pp 13973-13979
- R9. ZHANG Z, KLEINSTREUER C, KIM CS, J AEROSOL SCI, VOL 33 (2002) PP 257-281

Project supported by COST - European Cooperation in Science and Technology

THANK YOU FOR YOUR KIND ATTENTION!

ANY QUESTIONS?