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The motion of rigid spheroidal particles settling under gravity in a spatially periodic, cellular 
flow field has been studied. The particles are sufficiently small that their motion relative 
to the surrounding fluid satisfies the conditions for local Stokes flow, and the force and couple 
on the particle are linearly related to the local flow conditions. The motion of-each 
particle depends on the orientation of its symmetry axis, which turns in response to the local 
vorticity and rate of strain. For spherical shapes the cellular flow field generally can 
hold particles in permanent suspension, as they move in simple closed paths, over a significant 
portion of each cell. By comparison, for nonspherical shapes this suspension is greatly 
reduced, though not eliminated. The individual particles undergo a tumbling motion as they 
settle which, at large enough aspect ratios, is found to be chaotic. 

I. INTRODUCTION 

A common question in the study of particles settling 
under gravity in a nonuniform flow is whether or not the 
particles can be held in suspension by the flow, and if not 
what effect does the flow have on the average settling ve- 
locity. As an example, Stommel’ has studied the gravita- 
tional settling of small, spherical particles in a convection 
cell flow. The flow is incompressible, steady and two di- 
mensional, and may be specified by a streamfunction JI as 

$= UeL sin(xt/L)sin(xz/L). (1) 

The net force on each particle is approximately zero; as the 
particle responds rapidly to the local flow conditions, and 
at each instant the velocity of the particle is the sum of the 
local fluid velobity and the terminal fall velocity due to 
gravity. Stommel showed over a significant portion of each 
cell particles may be held in permanent suspension by the 
flow, moving in simple closed paths, provided that the ter- 
minal fall speed was less than the maximum updraft veloc- 
ity in the flow, [I,,. More recent workZv3 has shown that if 
the effects of particle inertia are included, this permanent 
suspension is no longer possible and that all particles settle 
out. Indeed the average settling velocity is generally greater 
than the terminal fall speed in the absence of any flow. 

tically very viscous flows, and the densities of the particles 
in the flow and of the liquid phase are comparable. The 
fluid forces on the particles, even for particles of several 
millimeters in size, are accurately described by Stokes flow 
with negligible fluid inertia and by the same token negligi- 
ble particle inertia. Very small aerosol particles may also be 
significantly nonsmpherical yet exhibit little effects of parti- 
cle inertia. Unlike solids in a liquid phase, the density of an 
aerosol particle is much greater than that of the surround- 
ing air and particle inertia becomes significant more 
quickly for increasing particle size even though fluid forces 
may be still well described by Stokes flow results. In atmo- 
spheric clouds ice crystals smaller than 20 pm in size will 
not typically show effects of particle inertia, yet will be 
distinctly nonspherical and for diameters greater than 5 
pm unaffected by Brownian motion. In this study we focus 
on the changes in particle motion that arise for nonspher- 
ical particles settling under gravity and exclude other mod- 
ifying factors. 

Of significance is the assumption that the particles are 
spherical in shape. In many situations of practical interest 
where solid particles are being transported by a flow, the 
particles may be distinctly nonspherical. Examples of this 
include the formation and growth of crystals in a liquid 
melt, ice crystal growth in atmospheric c1ouds,4 and crystal 
formation in a cooling body of magma.’ The size to which 
these particles grow and how the flow will ultimately de- 
velop will depend on how long the particles are suspended 
by the flo&. 

An aim of this paper is to investigate the motion of 
nonspherical particles in the cellular flow ( 1 ), to determine 
the extent to which particle suspension by the how still 
occurs, and- to evaluate the average settling velocity. A 
second aim of this paper is to obtain more general insights 
into the behavior of nonspherical particles settling in spa- 
tially varying flows and possible insights as to their motion 
in turbulent flows. Only in a loose, qualitative sense is the 
periodic cellular flow field representative of turbulent ed- 
dies of small-scale mixing, but previous studie8’ have 
shown its value in studies of dispersion. The advantage is 
that this tlow is amenable to analysis and it is inexpensive 
to compute particle trajectories. Our own experience2*’ is 
that the results can alert one to features arising in a tur- 
bulent flow that would be missed by a straightforward sta- 
tistical analysis. 

In these contexts the departures from a spherical shape An early study of the motion of nonspherical particles 
are often more significant than other influences such as in a fluid was the paper by Jeffery.’ He considered an el- 
particle inertia. Liquid melts and magmas are characteris- lipsoidal particle that was neutrally buoyant and was 
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placed in a uniform shear flow. The forces and moments 
acting on the small particle were determined by the Stokes 
flow produced by the particle moving-ielative to the flow. 
In this example the center of the particle moved with the 
fluid but the particle turned in response to the vorticity and 
rate of strain. Jeffery showed that the particle rotates in a 
regular periodic motion. Brenner,‘“~” and Dill and Bren- 
ner,” in a series of papers have analyzed the dispersion of 
nonspherical particles settling under gravity while subject 
to the e&&s of Brownian motion. In this context the fluid 
is at rest but the particles rotate under agitation by Brown- 
ian motion and as they do the direction of the tert$nal fall 
velocity changes. The particles do not’ settle; vertically.but 
at various random angles to the vertical,‘which leads to a 
Iateral dispersion. Cho et aZ.,13 Kagermann and 
Koehler,14 and Krushkal and Gallil~~‘5 amongst others, 
have investigated the settling and dispersion of nonspheri- 
cal particles ins turbulence. These studies have focused on 
deriving evolution equations for the statistical properties. 

In this paper we consider the combined effects of a 
spheroidal particle turning in response to the local velocity 
gradient and the changes in gravitational settling velocity 
that occur as the particle turns. In Sec. II we summarize 
the equations governing the motion of a small spheroidal 
particle and give the specific form they take for the cellular 
fiow field. In subsequent sections we examine the retention 
of particles in the flow,-.the tumbling motion of settling. 
particles, and the onset of chaotic motion that is found to 
occur at larger aspect ‘ratios. 

II. EQUATIONS OF PARTICLE MOTION 

The simplest nonspherical particle shape to.consider is 
the spheroid, or eliipsoid of revolution, which is specified 
by the two lengths of its principal diameters. These will be 
denoted as 2a, the diameter along the axis of symmetry, 
and 2b, the diameter orthogonal to the axis of symmetry, 
Ellipsoidal particles belong to the more general class of 
orthotropic particles,‘6’17 namely those with three mutually 
orthogonal planes of reflectional symmetry. In.this paper 
we restrict our attention to the motion of spherqidal par- 
titles of uniform composition, though for the moment we 
will give the equations of motion for a more general ortho- 
xropic particle. The motion of any rigid particle is specified 
by the velocity V of its center of mass and the angular 
velocity- fi about this point. We will denote the instanta- 
neous position of its center of mass by X(t) . 

while the Reciprocal Theorem” for Stokes flow ensures 
that both’ R~ and K are symmetric, proper tensors. The 
pseudotensor DUk is symtietric in the components fd? j and 
k, Ftii&er, the reflectional symmetries imply that the prin- 
cipal axes of K and R both coincide with the symmetry 
axes of the particle. When referred to these principal-axes 
the retations (5) and (6) take a particulariy simple form 
and the tensor components D@k only take nonzero values if 
the three indices are distinct. 

A small, isolated rigid particle when it is introduced 
into a flow field U(X,P) produces a local disturbance flow 
v(x,t) such that the sum af,the two,forms the resultant 
modified flow.‘The boundary cond$ons g&&&g the dis- 
turbance flow are that 1 v [ tends to zero farm from the par- 
ticle And that for points on the surface of the particle, the- 
no-slip condition applies. The particle is supposed to be 
sufficiently small that any velocity gradients of the undis- 
turbed flow may bi accurately regarded as being locally 
uniform: For poitits x on the surface of the moving particle 
the no-slip condition is 

Consistent with the assumption of low Reynolds num- 
bers (4) we will further neglect the influence of particle 
inertia for sufficiently small particles. The motion of the, 
particle is then specified by the condition that there is no 
net force or torque acting on the particle. Because of grav- 
ity there will be a force mpg on a particle of mass mP, 
suitably modified to take account of buoyancy if this is 
relevant, where g is the gravitational acceleration vector. 
The condition of no net force implies that (F + m,g) 
vanishes. When referred to the principal (symmetry) axes 
rhisconditifin from is), leads to the result for the particle 
velocity 

Vi= t2.i (X(t)*t) + W$ (7) .~ 
where lui are the three components of the terminal fall 
velocity (m&l/@Yl 1, m,lr2i@zzt mg3/@?& for a parti- 
cle settling in still fluid. Similarly, when referred tom prin- 
cipal axes the condition of no net torque, which for a par- 
ticle -of uniform composition is that G vanishes, gives the 
angular velocity of the particle 

a,=4 ~l(x(t)~t~ + D*&s, @a) 

v=v - u(X(t),t) + nx(x -X) - (x - X)*Vu, (2) 

or in terms of the local rate of strain tensor E and the local 
vorticity w of the undisturbed flow, 

v=V -- u(X(tj,t]l + iln - f w) X(x - Xj -~~. (rr - X)-E, 
(3). 

‘%he%e E and CO are evaluated at X(t). If the scale W. is 
taken to be .representative of the slip velocity 
[V -- u(X:X(tj,t)] and 8 is representative of the local fluid 
velocity. gradients, then the disturbance flow v will be a 
Stokes flow provided 

.aJk&441, f&/W, (4) 

where ‘iue further suppose that a is representative of the 
size of the particle and the angular velocity-0 is compara- 
ble to fi in magnitude. The linearity of the equations for 
Stokes flow and thC form of the boundary condition (3) 
ensure that the resultant fluid force F on the particle and 
the torque G are linearly related to the slip velocity, rela- 
tive r&te of rotation (a -’ 1 o) and rate of strain by 
tensors that depend only on the size and shape of the-par- 
ticle, and by.fhe fluid viscosity p. 

The reflectional symmetries of anorthotropic particle 
~simplify the nature of these Faxen relationsl’j to give 

~~=~K~[aj(~(t),t~ - y;.(t) a, (5) 
Gw~,C~ f.Q/ - Qjl, 2 p&q& (6) 

%=i #2(~(t)~~~ -I- Q&13, G3bf 
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G=f ~&W)rt) -t-W&, 
from (6) with 

iw 

4 =24dR11 (‘9) 

and corresponding definitions for D, and D3. 
We restrict attention now to the motion of axisymmet- 

ric particles. For these the specification of principal axes is 
simply determined from the unit vector m, aligned with the 
axis of symmetry. This symmetry vector rotates with the 
body and 

Principal components are determined by whether they are 
parallel or normal to m. The two principal fall speeds IV, 
and IV2 are defined, respectively, as the terminal fall speed 
for a particle settling parallel to the axis of symmetry m or 
normal to it. Thus if 2 denotes the unit vector in the di- 
rection of gravity the general form for the particle velocity 
(7) is 

V(t) =$=u(X(t),t) + Wl( jIj*m)m 

+ W2[ 2 - (2Mml. (11) 

Symmetry condition@* for axisymmetric particles imply 
that D, =0 and that D3 = - D2; we simply denote D, by D 
from here on. The angular velocity (8) of the particle is 

n(t) =; 4Wt>,t) + hx (E-m). (12) 

Equations (lo)-( 12) are sufficient together with the val- 
ues of the parameters Wi, IV,, and D to determine the 
motion of any small axisymmetric; orthotropic particle in a 
nonuniform flow. 

A. Spheroidal particles 

Specific values for fall speeds W1 and W,, and the 
parameter D can be given for spheroidal particles. Jeffery’ 
in his study of spheroidal particles in a uniform shear has 
evaluated the tensors used in (5) and (6) and additional 
results are given by Bretherton.18 The basic parameter to 
specify is the aspect ratio il = a/b for the spheroidal shape. 
In terms of this the ratio of WI to W, may be evaluated 
since WI and IV, are, respectively, m,g/Kll and 
mpg/ruK22, 

FV,/ w, = A = K, @,,. (13) 

For a prolate spheroid, /z > 1 and with 72 = d2 - 1, 

*=I [ (272 - l)log(A + 7) + a71 
2 EW+ l)log(R-lr) --a?-] * 

(14) 

For an oblate spheroid, d < 1 and with 2 = 1 - A2, 

*_A [(2?+ l)tan-‘(r/a) -/23-l 
2 [ (272 - l)tan- ‘(r/L) + dr] ’ (15) 

A spherical particle has aspect ratio one and the two prin- 
cipal fall speeds are equal, A = 1. Figure 1 shows the vari- 
ation of A with aspect ratio /2, as A varies between 1.5 for 

1483 Phys. Fluids A, Vol. 3, No. 6, June 1991 

0.50 1 , ,,,,, I,( , ,,,,,,,, , ( ,,,i,,, , , ,# (,,,, , , (,I ,,,, , ,ilfj 

1o-s lo-’ 10-l loo 10’ 10’ 
x 

FIG. 1. Variation of the ratio of the principal settling velocities 
A = W,/ W, with the aspect ratio ,I. for a spheroidal particle. Also shown 
are the ratios of W, and W, to V,. 

disk-shaped particles, /z = 0, and 0.5 for cigar-shaped par- 
ticles where il becomes very large. 

The value of the parameter D determines the degree to 
which the particle turns in response to the local rate of 
strain. This is given in terms of the aspect ratio /z by 

0=(/l’- l)/(A2 -i- l), (16) 

and varies between the values of - 1 for disk-shaped par- 
ticles (oblate) to. + 1 for cigar-shaped particles (prolate). 
A particle will continue to rotate indefinitely in response to 
vorticity (12) but will turn with the rate of strain only 
until the axis of symmetry aligns with one of the principal 
axes of the rate of strain. In a pure straining flow and 
where E takes a fixed value, then a prolate spheroid will 
turn until the axis of symmetry is aligned with the princi- 
pal axis of greatest positive strain rate. There is an asymp- 
totic preference for this alignment. Conversely, an ablate 
spheroid will tend to align with the symmetry axis parallel 
to the principal axis of largest negative strain rate. 

Rather than specifying the value of W, and then infer- 
ring the value of W, from the value of the ratio A it is 
useful to .define a spherically averaged fall speed. This 
would be the average fali speed of a particle with uniformly 
random orientation settling in still fluid. This spherically 
averaged fall speed V, is 

v,=iw1+ 2w21, 

and in terms of this 

(17) 

WI/V, =3/(2A:‘+ l), (18) 

w2/v,=3ii/(2fi + 1). (19) 

The value of V, permits an easier comparison of the be- 
havior of spherical and nonspherical particles. The varia- 
tion of WI/V, and W2/ V, with aspect ratio is also shown 
in Fig. 1. 
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FIG. 2. Typical velocit~protiles and streamline patterns for the cellular 
flow field in the horizontal region - 1 <xl< + 1. Stagnation points lie at 
the flow comers and the center of each cell. 

I3 Motion in a cellular flow 

The preceding derivations have been fairly general and 
apply equally to many different flows. In this paper we 
consider the effects of the two-dimensional cellular flow 
given by the streamfunction r/~ in ( 1) . The scale U, for the 
maximum flow speed is set equal to one and t-he size-of 
each cell . IS chosen so that L= l/r. The corresponding 
velocity field in fixed coordinates is 

u= ( ul,uaO) = (sin 7rxr cos 7rX2.% - cos 7rxt sin 7rx,,O) F 
(201 

and the x2 axis is aligned vertically downward parallel to $j. 
Some typical velocity profiles and streamlines are shown in 
Fig. 2, The flow extends with periodic repetition in both 
the x1 and x, directions, and is spatially uniform in x3. The 
maximum flow occurs on the cell boundaries, and there are 
stagnation points at the center of each cell and at the cor- 
ners. The corresponding vorticity vector w has only one 
nonzero component, perpendicular to the plane of the flow, 
Q = (O,O,w), where 

co = 2n sin n-x1 sin 97-x> (21) 
The rate of strain tensor has two nonzero components 
BsEll - - Ez2 where 

E=?r cos rxl cos rrx2. (22) 
The equations of motion for a spheroidal particle [(lo)-- 
(12)] now take the form 

v* =.u1 + ( w, - w&z~m, (234 
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Y2=ri2 f Wz C (WI - W2jmz, (23b) 

Vs== f. FV! - W2jm2m3, (23~);’ ‘- 

combined with (20) and with (21) and (22) 

driz* 1 -= 
dt -~2m2*~Eml(m~4- 2mij, (24aj 

dm2 1 

z-=5 wyn’ 
-- DEmzCrn:~+ 2mf j, G@b) 

dm3 
x=DEm.&rns - mij. (24cj 

The rate of rotation depends both on the particle orienta- 
tion and local flow conditions, which-change as the particle 
moves. The velocity and orientation of the particle are 
closely coupled and the system of equations f 23 ) and ( 24) 
governing the particle motion have a complicated struc- 
ture, much more so than for motion in a uniform shear.sV’8 

To better understand the particle dynamics a restricted 
system will be considered, namely the symmetry axis will 
be constrained to lie in the (xi,xZ) plane. A particle ini- 
,tially introduced and aligned in the plane, m?=O, will re- 
main aligned in the plane as indicated by (24c). This align- 
ment condition may also give a better indication of what 
may occur in a general flow varying in all three spatial 
directions. The important feature introduced in studying 
nonspherical particles is the difference in the two principal 
fall speeds Wt and I$72 -The effect of this difference is de- 
termined by the orientation components ml and m2. A 
particle with alignment out of the plane presents a lower 
projected aspect ratio onto the planeand so reduces the 
influence of-this feature. Alternatively, we may note that 
0 < mf, rn$ r;: 1 - rn$ and the maximum values of ml and 
.@r2 are reduced if-m3 is nonzero; For these reasons we 
consider this restricted problem with the expectation, 
borne out by prehminary tests, that these results are typical 
of the general behavior. 

Under this condition that m3 vanishes, both V, and 
dmj/dt remain zero and the equations of motions (23) and 
(24) can be expressed as 

2; = sin 7%x-* cos TX* + ( w, - W~jSin 0 cos 8, (25a) 

V2’2- - ~(3s nX1 sin VA?, + W, + ( W, - W, j sin’ 0, 
(25b) 

de 
$=== r sin rr..X1 sin 7~7, 

- 21)~ cos n’X! cos rxr, sin 0 cos B. (25c) 

The orientation of the particle in the (x,,x,)plane is spec- 
ifred here by the angle 0, ml =cas 8 and m2=sh 8. This 
system of three coupled, nonlinear equations may be solved 
numerically. The results presented in the remaining sec- 
tions were obtained by using standard predictor-corrector 
schemes-i9 or fourth-order Runge-Kutta methods. 
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FIG. 3. Sample paths of spherical particles settling in the cellular flow 
field: W=O.5. The broken line denotes the boundary trajectory separating 
the trapping and settling regions; + denotes interior static equilibrium 
point. 

Ill. PARTICLE SUSPENSION 

The first aspect of the particle motion to be considered 
is whether or not spheroidal particles may be suspended by 
the flow. As noted earlier a spherical particle may be per- 
manently suspended in certain regions of the cellular flow 
field and will follow a simple closed path. The motion of a 
spherical particle is conveniently given by a particle 
streamfunction 4 obtained from ( 1 ), 

$=4- Ymx,=(l/~)sin(~x,)sin(~~2) - Vmxl, 
(26) 

with Vr=a$/ax, and V,= - &$/dx,, and since the termi- 
nal fall speeds W, and W, are equal these are also equal to 
V, from (17). Suspension is possible for V, < 1. Sample 
particle trajectories for spherical particles, which illustrate 
these closed paths in the upflow region of the cell, are 
shown in Fig. 3. There is a bounding path emanating from 
the equilibrium points on the cell boundary corresponding 
to 4 = 0, outside of which the particles settle, swept down- 
wards by the downflow in this other region of the cell. 
Disregarding the rotation of the sphere, as this is decou- 
pled from the velocity of the particle, the spatial equilib- 
rium points for a sphere are saddle points at 

Xi-O, X,=( 1/7r)sin-‘( V,), 

X1=0, X,=1 - (l/?r)sin-‘( V,), 

and a center at 

Xt=(l/?r)cos-‘(V,), x2=;. 

(274 

(27b) 

(28) 

80 

0 L 

0 0.2. 0.4 0.6 0.8 1 
V 

m  

FIG. 4. Percentage of an initially uniform spatial distribution of spherical 
particles permanently suspended, as a function of Stokes settling velocity. 

These are determined from (25) for the cell O<x, < 1 and 
O<x,< 1, and corresponding points exist for the other cells. 

The extent of the particle suspension may be measured 
by the fraction of the area enclosed by the bounding tra- 
jectory compared to that of the cell as a whole. This is 
shown in Fig. 4. If particles were initially introduced into 
the flow with a uniform spatial distribution this area frac- 
tion would equal the fraction of the number of particles 
that would be suspended in the flow. Clearly no equilib- 
rium points [( 27) and (28)] exist if V, > 1 and under 
these conditions ail particles settle out. 

In going to the motion of a spheroidal particle a num- 
ber of changes occur. First, the particle orientation 8 is no 
longer decoupled, and as the particle turns the velocity of 
the particle (25) will change. If the orientation is included, 
even for a sphere, the center (28) is no longer an equilib- 
rium point since the particle would continue to rotate. The 
possible equilibrium points for the cells - 1 <xi< 1 and 
O<x,( 1 all lie on the cell boundary X1 -0, with 

X,=( l/r)sin-‘( Wz), 19=0, (29a) 

X,=1 - (l/~>Sin’(W& 8=0, (29b) 

X,= (l/a)sin-‘( W,), 0=7r/2, (3Oa) 

X,=1 - (1/7i-)sin-‘(Wr), 0=7r/2. (3Ob) 

The values of W, and W, are equal for a sphere and the 
points (29) and (30) match the single pair of equilibrium 
points (27), except that for a sphere there is no restriction 
on the value of 0. 

The distinction between suspension and settling of 
spheroidal particles is no longer clear-cut. The particle 
paths, even in what may be regarded as a region of particle 
suspension, are complex curves. This is illustrated by the 
sample trajectories shown in Fig. 5, computed for the time 
interval t=O-50 during which each particle remained 
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-1.00 Y-Lt.25 

(a) 

FIG. 5. Typical paths in the (x1,x2) plane of spheroidal particles suspended by the cellular flow tield. All trajectories shown lie within the cell O<X,,X~< 1  
and  the spherically averaged settling velocity V, =  0.25: (a) 1~  1.0, initial point (X,,Xz) =  (0.6875,0.4375);  (b) A s 0.5, initial p&t as in (a); (c) 

R. = 2.0; initial point as  in {a); (d) h  =  0.1, initial point (0.5625, 0.4375);  (t) ,I== 10.0, initial point as in (d). 

within the initial cell. The sequence of Figs. 5[a)-5(c) is 
for a particle introduced at the same initial point but-with 

possible for a different initial position, but the precession in 

different aspect ratios: ,I = 1, a  sphere; /z = 0.5, an obIate 
the particle path is more pronounced. _ 

spheroid: and il = 2.0, a  prolate spheroid. These show the 
The extent of particle suspension was determined by 

influence of the particle rotation on particle velocity. At 
releasing 500 particles at t=O within the cell Ogxrc; 1, 

higher aspect ratios, Figs. 5/d) and 5 (e), suspension is still 
Q<x~< 1. The particleswere introduced with-random, uni- 
formly distributed initial positions and orientations and 
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their motion recorded. Figure 6 shows the percentage of 
these particles at later times which are still retained in the 
initial cell and which have not crossed out of the cell. This 
has been calculated for different values of V(, and aspect 
ratios ,I.. Soon after the particles are introduced a large 
portion is swept out of the cell by the downflow region. 
This is much the same whether the particles are spherical 
or not. Subsequently, the number of spherical particles re- 
tained equilibrates to a steady’value, as given in Fig. 3 (b), 
while the number of nonspherical particles retained con- 
tinues to slowly decrease at least for some time. Long-term 
suspension still appears to occur.,.but. is significantiy re- 
duced. 

Another view of the extent to which long-term suspen- 
sion occurs is presented in’Fig. 7. Particles were introduced 
at x2 = f with different initial values of the horizontal coor- 

FIG. 6. Percentage of spheroidal particles retained as a function of time 
for the various aspect ratios A indicated: (a) V, = 0.25; (b) V, = 0.5; 
(c) v, = 0.75. 

dinate x1 in the range O<xr<l, and with different initial 
orientations 19 between 0 and QT. These were arranged on a 
uniform 50x 50 grid. The motion of each particle was fol- 
lowed for up to t=50 to determine whether or not the 
particle remained in the initial cell. The points shown in 
the diagrams record the initial values of those particles still 
suspended in the flow. Any spherical particle introduced in 
the interval 0 < xl- < XT, where xT solves 

sin(irxT)/?rxf= V,, (31) 

irrespective of initial orientation would be suspended. For 
V, = 0.5, as in Fig.7, the value of xT is 0.603. The results 
indicate that for moderate aspect ratios, /z = 2 or 0.5, par- 
ticles remain suspended over a substantial range with only 
a slight dependence on orientation. At V, = 0.5,48% and 
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FIG. 7. Plots of the initial vahxcs of XI,@ for spheroida particles released at X,=0.5 and  which are stiH retained within the initial cell at t=50. Points 
re leasedon a  unifoim 50X50 grid: (a) h  =  0.1, V, =  0.5; (b) A-- 0.5, V, =C 0.5; (12) R = 2.0. V, =  OS; (d) 2  =  10.0, V, = 0.5. All spherical particles 
released in the interval 0  <XV, ~0.603, for V, - 0.5, will be  retained. 

SO%, respectively, of the particles sol introduced remained 
suspended, compared to 60% for spherical particles. Sig- 
nificantly, particles introduced close to the cell boundary at 
x1=0 are not retained. At larger aspect ratios the extent of 
particle suspension is reduced with a stronger dependence 
on orientation. Again at V, = 0.5, 37% of the particles 
remain suspended for L = 0.1, 3  1% for ,I = 10. The plots 
do not show a clear boundary between the regions where 
particles are suspended or not, rather it is irregular, espe- 
cially near xl = 0. 

- the possibility that there is some very slow leakage of par- 
ticles out of the region of particle suspension, which might 
lead over the extreme long term to ail the particles settling 
out. But we consider this unlikely. The extent of particIe 
suspension is-reduced for particles of spheroidai shape> and 
the reduction is greater with increasing departures from a 
spherical shape. 

IV. SETTLING PARTidLES 

Based on these results we conclude that the long-term We  now consider the trajectories of settling~particles 
suspension of spheroidal particles is still possible, at least that are not trapped in the initial cell but cross from one 
for times up to t= 50 or so. We  cannot at this point exclude cell to the next in the vertical direction. In doing so we 
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FIG. 8. Sample particle trajectory, path in (X,,X,) plane and orientation, 
of a settling spherical particle: /1= 1.0; V, = 0.75. Initial position 
(X,,X;) = (0.1875,0.8125). Cells marked at unit intervals. 

include information about particle orientation as well as 
particle position. In Fig. 8 the path and orientation of a 
spherical particle are shown, where the particle started out- 
side of the suspension region in the initial cell. The path of 
the particle is regular and periodic, repeating as expected 
from (26) with period 2 in the vertical direction. The 
sphere settles rapidly through the cell 1 <x&2, where it is 
swept by the downflow and is then deflected by the upflow 
in the next cell. This pattern is then repeated. The orien- 
tation of the sphere, however, does not have this simple 
periodic structure, but exhibits a quasiperiodic motion. 

It is appropriate at this stage to examine the equation 
[(25c)] governing the orientation of the particle. For a 
sphere, D=O and the particle turns only in response to the 
local vorticity, 

de 
-g=7r sin 71X1 sin ?rX,. (32) 

In the absence of gravitational settling this rate of rotation 
is proportional to the particle streamfunction 4. (26), 
which is a constant of motion for a sphere. Under these 
conditions the local fluid vorticity is constant along a 
closed particle path and the sphere rotates simply with 
constant angular velocity. In the presence of gravitational 
settling, however, the local vorticity is continually chang- 
ing as a function of particle position. As the path is peri- 
odic, so too is the local vorticity. The sphere now rotates 
(32) but with an angular velocity that itself is a periodic 
function of time. This leads to the~quasiperiodic orientation 
shown in Fig. 8. 

For a spheroid the changing particle orientation is cou- 
pled with the velocity of the particle (25) through the 
difference in the two fall speeds W, and W,. This leads to 
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an irregular, aperiodic motion evident in both the particle 
orientation and the particle path. In Fig. 9 sample trajec- 
tories of nonspherical particles are shown. For moderate 
aspect ratios, il = 2 or 0.5, the particle paths are not too 
different from the corresponding path of a sphere. The 
particles shown settle rapidly when close to the cell bound- 
ary, in the downflow regions, and are deflected by the up- 
flow regions in alternate cells. Close to x,=0 the fluid 
vorticity is negligible yet the rate of strain E is large (22). 
As the particle falls close to this cell boundary it turns to 
align with the principal axes of the rate of strain, as de- 
scribed earlier, and this is evident in the values of sin 8 and 
cos 8, which take nearly constant values in these intervals. 
At larger aspect ratios both the particle paths and orienta- 
tions show strong irregular behavior, indicating that the 
motion is chaotic. 

Finally, we present results (Fig. 10) for the average 
settling velocity of the particles as the terminal fall speeds 
for still fluid are varied. These were obtained in the same 
manner as those for Fig. 6. At t=O, 500 particles were 
released with random initial positions and orientations and 
their motion followed up until t= 50. For each particle the 
settling velocity was zero if it remained trapped, and 
2/T, if it settled out where T, was the time taken to fall 
between x2= 2 and x2=4. An average was then obtained 
over all the particles released. For a spherical particle the 
average (Va is equal to V,, indicating that the flow has 
no net effect on the average settling velocity in agreement 
with earlier results.2’3 The nonspherical particles settle on 
average more rapidly. This in part may be attributed to the 
reduction in the number of particles held in suspension. 

V. CHAOTIC MOTION 

The observation of irregular motion in the trajectories 
of nonspherical particles raises the question of whether or 
not the particle motion is chaotic. Chaotic motion of La- 
grangian fluid elements in various unsteady two-dimen- 
sional flows is a well-known phenomena2G22 and has been 
found to occur in the three-dimensional steady ABC 
flo~.‘~ It has been observed even in unsteady cellular flow 
fields by Smith and Spiegel.“4 Here the flow field is steady 
and two dimensional, and the motion of both Lagrangian 
fluid elements and spherical particles is completely regular. 
Any chaotic behavior must be a result of the tumbling 
motion of the spheroidal particles. 

As an initial investigation of this question some Poin- 
care sections were obtained. Plots of the (X1,0) coordi- 
nates were made for successive intersections of a particle 
trajectory with the level X,=2n -f l/2 for arbitrary inte- 
gers PI, explicitly using the periodicity of the flow. By this 
means we can obtain sections for both suspended and set- 
tling particles. Figure 11 (a) shows the section for the reg- 
ular motion of a suspended spherical particle, correspond- 
ing to the trajectory shown previously in Fig. 5. The path 
repeatedly intersects the midlevel X, = $ at the same two 
values of Xi. But for the reasons noted in the previous 
section the period of the sphere orientation is in general not 
rationally related to the period of the path in (x1,x*) piane. 
This leads to the continuous line of values for 8, between 0 
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FIG. 9. Sample trajectories of settling spheroidal pat-tides, path and orientation for V,-Z. 0.75, cells marked at unit intervals: (a) L = 2, initial point 
(X1,X2) = (0.1875,0.6875); (b) R = 0.5, initial point as~in (a’); (‘c) A, = 10.0, initial point (0.1875, 0.5625): (d) /z = 0.1, initial point as in (c). 

andr, at the intersection with X2 = f. The other sections 
[Figs. 1 l(b) and I1 (c)] for suspended nonspherical parti- 
cles have the same general features of regular motion. 
There are two distinct values of X1 at the intersection, 
which’are modified by the corresponding particle orienta- 
tion and hence settling velocity at these points. 

The Poincari sections of Figs. 11 (d&l 1 (f) are for set- 
tling particles and correspond to trajectories whose initial 
stages were previously given in Figs. 8 and 9. The path of 
a spherical particle is regular in the (x~,x-J plane repeating 
with period 2 in the x2 direction. There is a single value of 
XI corresponding to the intersection with X2 F 1 (mod 2)) 
which is apparent in Fig. 1 l(d). Again there is a continu- 
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ous range of values of @  at the intersection due to the 
noncommensurate periods for motion in the x2 direction 
and particle rotation. Ry comparison, there is considerable 
scatter in the sections for the nonspherica1 settling par& 
cles, indicating at least weakly chaotic motion. 

Finahy, we present in Fig. 12 power spectra for the 
time series of the particle orientation Mu, equal to cos 8, .to 
indicate whether the~motion is quasiperiodic or aperiodic. 
The settling sphere of Fig. 1.2(a) shows strong periodic&y 
with several harmonics. The suspended spheroid of Fig. 
12(b) exhibits less structure, but the spectrum has distiu- 
guishable frequencies and harmonics, while the settling 
spheroid of Fig. 12(c) gives rise to a continuous, broad- 
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FIC3. 10. Average vertical settling velocity (F’,) of spheroidal particles for 
various aspect ratios I., against the spherically averaged fall speed V,. 

band spectrum. The dynamical coupling of particle orien- 
tation to particle velocity ensures that these spectra are 
also representative of the velocities of nonspherical parti- 
cles. Other spectra not shown here have similar features 
and Fig. 12 is typical for the particle motion. The spectra 
were produced by the IMSL routine FTFPS,‘~ based on a 
record of 20 480 data points. 

Based on the results so far we conclude that suspended 
spheroidal particles have a regular, quasiperiodic motion 
but that settling spheroidal particles have a chaotic tum- 
bling motion. The extent of the chaotic motion and its 
specific dependence on the parameters, such as aspect ratio 
il, will require further investigation. We note that the sys- 
tem of equations (25) governing the particle motion, re- 
stricted to planar orientation, is a third-order autonomous 
system. This is the lowest order for an unforced dynamical 
system to exhibit chaotic motion.25 By contrast, the system 
studied by Jeffery’ for steady, uniform shear resulted in 
only a second-order system since m3 could be determined 
from ml and m2 and gave rise to regular periodic motion. 
Thus the combination of nonuniform velocity gradients 
and particle tumbling are required for chaotic motion. We 
note also that we would not expect an attractor in this 
system since it is not dissipative, nor is the divergence in 
phase space - (X1,XZ,@ strictly negative. The divergence 
is given by 

&k,~+&x,~+-&) 
1 2 

=- 2077 cos ?rX1 cos rrX2 cos 20, (33) 
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which changes sign frequently during the course of the 
motion. 

VI. PARTICLES WITH INERTIA 

A full discussion of the modifying effects of particle 
inertia on the results presented so far is beyond the scope of 
this paper. #But in this initial investigation we did make 
some limited calculations to see what might be expected to 
arise and whether or not the chaotic motion would persist. 
Previous experience with spherical particles’ has shown 
that weak inertial effects over a long period of time lead to 
very organized regular particle trajectories, and the possi- 
bility exists that particle inertia would reduce or eliminate 
the chaotic tumbling of the spheroidal particles. The equa- 
tions of motion when particle inertia is included are more 
complex than those treated up until now, Eqs. (lo)-( 12). 
The full equations of motion are summarized in the Ap- 
pendix. 

Besides the parameters V, for the settling velocity and 
;1 for the aspect ratio, an additional parameter must be 
specified for the inertial response time of the particle. This 
is defined here as a spherically averaged value l/a: by Eq. 
(A4). This time scale together with the other two param- 
eters are sufficient to completely specify the particle motion 
of a spheroidal particle. The nondimensional value of a! is 
given in terms of the scales L, U,, of the cellular flow field 
as A = aL/ U,. 

At a settling velocity V, = 0.5, a spherical particle sub- 
ject to weak inertia, A = 10, eventually follows a well-de- 
fined asymptotic trajectory that is insensitive to the initial 
particle position. All particles settle and there is no long- 
term particle suspension. For A= 1.0 the motion is no 
longer organized and shows no structure, except again for 
the absence of particle suspension, while for A =O. 1 the 
motion is again structured in the long term with the par- 
ticles settling vertically along the vertical cell boundaries, 
apparently with little direct influence from the flow. At the 
same settling velocity, a nonspherical oblate spheroid with 
aspect ratio il = 0.1 shows similar characteristics. For 
weak particle inertia, A= 10, there is no obvious chaotic 
motion by t=200 and the particles appear to collect into 
regular asymptotic paths as did the spherical particles. For 
A== 1.0 the motion is chaotic and disorganized, while for 
A =O. 1 the particles eventually settle along nearly vertical 
paths close to the cell boundaries but somewhat displaced 
from them. 

These results are only suggestive of how particle inertia 
may modify the particle motion and further work on this 
topic is needed. The general indications are that weak in- 
ertia or very strong inertia over a long period of time will 
indeed reduce or eliminate the chaotic motion. 

VII. CONCLUSION 

In this paper we have addressed the question of 
whether or not nonspherical particles may be suspended by 
a simple, steady cellular flow and some of the general char- 
acteristics of the particle motion. The results indicate that 
suspension still occurs but is rtiduced as departures from 
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spherical shape increase. In the process we have found that 
the motion of these nonspherical particles is in many cases 
chaotic. This raises many issues that will require further 
study and we have presented here only a preliminary in- 
vestigation of the chaotic behavior. Recent work by Shinz6 
has confirmed our speculation that particle suspension still 
occurs, and this will be reported on in the near future. Of 
practical significance is that chaotic mixing of nonspherical 
particles may occur in Iaminar flows, analogous to the pro- 
cesses in Lagrangian turbulence.22 Second, based on the 
general features of our results we may expect chaotic ori- 
entations of nonspherical particles to be possible in other 
flows that have either nonuniform or unsteady velocity gra- 
dients. 

FREOLIENCY 

FIG. 12. Power spectra of the time series for particle orientation along a 
trajectory; (a) spherical particle, A = 1, V, = 0.75, (see Fig. 8); (b) 
spheroidal suspended particle, A= 0.5, F’, = 0.25 [see Fig. 5(b)]; (c) 
settling spheroidal particle, A= 10, V, = 0.75 [see Fig. 9(c)]. 
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APPENDIX: PARTICLES WITH INERTIA 

In this appendix we specify the equations of motion 
appropriate to a spheroidal particle subject to the effects of 
particle inertia. The momentum equation for a particle of 
mass mp is 

m,z=F + mpg, 
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where the fluid force on the particle F is specified by (5). In line with our earlier discussion the fluid torque G acting 
Referred to the symmetry axes of the particle and the unit on a spheroidal particle is 
vector m along the axis of symmetry, 

Kg=Klmimf + K2(Sy - mimii). (32) 
G ==p{Rl($co---62)~mm 

Thus +R,[(~60--stl- i+w-Wm~lI .. 

mp ~=pKlmm4,u-V) -I-pKx[(u--V) 

- mn(u - V)m] + mpg, (A.31 

where II denotes the local fluid velocity u(X(t),t). The in- 
ertialresponse time for motion parallel to m is mJpK1 and 
rndpKz for motion normal to the axis of symmetry. It is 
convenient to define a spherically averaged inertial re- 
sponse time f/a by 

lm,l 2 -=A 
cz 3p F&t?- ’ i 1 

(A4) 

+ pR2DmX (Eemj. (A13) 

The local fluid vorticity w is evaluated at the center of the - 
particle XC f) ‘as is the 1ocaI rate of strain E. The coelficient 
I) is given by ( 16). Explicit values of Rt and R, for prolate 
spheroids, L2) 1 and 7” = K2 - 1, are’& 

R,==&f&3T3[aT- 1ogfR -+ T)] -I,’ (Al41 

R2=$l-b32(1 i-AT)[(2i!f l)log(il+ T) --al-] -1; 
(A151 

and for an oblate spheroid, /2< 1 and a = 1 - R2, 

similar to the definition (17) for II’,. In terms of a and Rp+rbJTqtan-“(r/a) -/tT] --I,. (-4161 
kr, the equation of motion is 

ldv 1 R2- -~&%‘(I +A2)[/27f (2rZ-- I)tan-‘(7//2)]-1. 
; z=j(2+A-')[(A--l)(u-V)*mm CA171 

+ (u-V)1 + CAL (A51 
From (AI 2 ) and the above specification of the fluid torque 
the rate of change of the angular velocity 0 can be deter- 

the ratio A=K,/& is given by (14) and (15). mined. 
Explicit values of Kt, iQ for prolate spheroids, J.&l 

and r” =-a2 - 1, are16 

Ir, =8n-b~~[ (22 f l)log(/l -f- r) i- kr] -- ‘, (46) ‘H. Stommel, J. Mar. Res. 8, 24 (1949). 
;?M. It. Maxey and S. Co&n, I. Atmos. Sri. 43, 1112 (1986). 

Kz=1671-bg[(2?- l)log@+r) +&-J-1; (A71 
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KI=8rrbr3[(2?- l)tan-*(r/a) +/271-l, b48) 

&=16?rb~[(2~-- l)tan-‘(r/J.) -kr]-I. --(A9) 

From, these results the inertial response time parameter 
l/cl- can be evaluated. 

The angular momentum for rotation about the center 
of mass of the particle is given by LQCkj where I is the 
moment of inertia tensor, which for a spheroidal particle is 

Iqii=l~T?ZfWZjf..?~(Sjj- inimi). (AlO) 
The principal moments I1 and Iz are $mpb” and !rnJa’ 
+ b”), respectively. The rate of-change-of angular momen- 

tum is equal to the resultant fluid torque G, determined by 
b, and 
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