

Particle and Fiber Transport and Deposition in Ducts -RANS and Sublayer Models

Goodarz Ahmadi

ahmadi@clarkson.edu

Coulter School of Engineering

Clarkson University, Potsdam, NY 13699-5700

Introduction to Aerosol Transport and Deposition RANS Computational Models Sublayer Models Spherical and Fiber Transport and **Deposition** Conclusions

> Aerosols are suspension of solid or liquid particles in a gas. Dust, smoke, mists, fog, haze, and smog are common aerosols. Aerosol particles are found in different shapes.

Aerosols in the Atmosphere

Knudsen Number	$Kn = \frac{2\lambda}{d}$
Mach Number	$\mathbf{M} = \frac{ \mathbf{v}^{\mathbf{p}} - \mathbf{v}^{\mathbf{f}} }{\mathbf{c}^{\mathbf{f}}}$
Schmidt Number	$Sc = \frac{v}{D} = \frac{n^{f} \lambda d^{2}}{4}$
Brown Number	$Br = \left(\frac{\overline{v^{p,2}}}{\overline{v^{f,2}}}\right)^{1/2} = \frac{ \overline{v'^p} }{ \overline{v'^f} }$
Reynolds Number	$\operatorname{Re} = \frac{ \mathbf{v}^{p} - \mathbf{v}^{f} d}{v} = \frac{4M}{K_{n}}$

Particle Diameter, ^{µm}										
	1	0^{-4} 1	10^{-3} 1	0^{-2} 10	0^{-1} 1	0^0 1	10^{1} 1	0^2 1	0^3 1	0^{4}
Electro. Wave		← X-1	Ray →	← UV-	→ Vis ◄		Infrare	d▶	- Mi	crowaves
Definition	Solid Liquio	d	•	Fume	Mist —	•	– Dust	- Spray	→	
Soil				•	Clay —	→ Silt	◀	Sand —	→ Grav	el
Atmospheric			•	Sm	log	→ Clou	d/Fog	Mist ←	Rain—	▶
Typical Particles			← Viru	ises→ ← Sm	←] noke →	Bacteria ← Coa	→ Ha d Dust→	ir Beach S	Sand	
Size Analysis methods			← E ← Ultr	lectron I a Centri	← M Microsco fuge →	licroscoµ py→→ ← Sedi	oy→ • • • mentatio	── Si on→	eving—	

Re

For 1000 > Kn > 0

Stokes-Cunningham Drag

$$F_{D}$$

3πµUd

Cunningham Correction

$$C_{c} = 1 + \frac{2\lambda}{d} [1.257 + 0.4e^{-1.1d/2\lambda}]$$

Variation of Cunningham correction with Knudsen number.

Non-Spherical Particles Clarkson University

$$F_D = 3\pi\mu Ud_e K$$

$$d_e = \left(\frac{6}{\pi} \text{Volume}\right)^{1/3}$$

Cluster Shape	Correction	Cluster Shape	Correction	Cluster Shape	Correction
00	K = 1.12	0000	K = 1.32	00 00	K = 1.17
000	K = 1.27	00000	K = 1.45	00 0 00	K = 1.19
0 0 0	K = 1.16	000000	K = 1.57	00 00 00	K = 1.17
000000 0 0	K = 1.64	000000	K = 1.73		

Ellipsoidal Particles Clarkson

$$F_{D} = 6\pi\mu UaK'$$

$$\beta = \frac{b}{a}$$

$$\beta = \frac{b}{$$

Rep

Ellipsoidal Particles Clarkson

$$F_D = 32\mu a U/3$$

 $=\frac{4\pi\mu U}{(2.002-\ln R_e)}$ **F**_D

2aU R_e

Equation of Motion

$$m\frac{d\mathbf{u}^{p}}{dt} = \frac{3\pi\mu d}{C_{c}}(\mathbf{u}^{f} - \mathbf{u}^{p}) + m\mathbf{g}$$

$$\tau \frac{\mathrm{d} \mathbf{u}^{\mathbf{p}}}{\mathrm{d} t} = (\mathbf{u}^{\mathbf{f}} - \mathbf{u}^{\mathbf{p}}) + \tau \mathbf{g}$$

Relaxation Time

$$\tau = \frac{mC_c}{3\pi\mu d} = \frac{d^2\rho^p C_c}{18\mu} = \frac{Sd^2 C_c}{18\nu}$$
s
$$\tau(s) \approx 3 \times 10^{-6} d^2(\mu m)$$

$$\mathbf{u}^{p} = (\mathbf{u}^{f} + \tau \mathbf{g})(1 - e^{-t/\tau})$$

Terminal Velocity = Equilibrium Velocity after Large Time

$$u^{t} = \tau g = \frac{\rho^{p} d^{2} g C_{c}}{18 \mu}$$
$$u^{t} (\mu m/s) \approx 30 d^{2} (\mu m)$$

Stopping Distance = Penetration distance for an initial velocity of u_o

$$\mathbf{u}^{p} = \mathbf{u}_{o}e^{-t/\tau} \quad \mathbf{x}^{p} = \mathbf{u}_{o}^{p}\tau(1 - e^{-t/\tau})$$
$$\mathbf{x}^{p} = \mathbf{u}_{o}^{p}\tau$$
$$\mathbf{x}^{p} = \mathbf{u}_{o}^{p}\tau$$
$$\mathbf{x}^{p}(\mu m) \approx 3d^{2}(\mu m)$$

Relaxation Time, Terminal Velocity and Stopping Distance

Diameter, µm	Terminal Velocity	τsec	Stopping Distance	Stopping Distance
			u= 1 m/s	u= 10 m/s
0.05	0.39 µm/s	4×10^{-8}	0.04 µm	0.0004 mm
0.1	0.93 µm/s	9.1×10 ⁻⁸	0.092 µm	0.0009 mm
0.5	10.1 µm/s	1×10 ⁻⁶	1.03 µm	0.0103 mm
1	35 µm/s	3.6×10 ⁻⁶	3.6 µm	0.0357 mm
5	0.77 mm/s	7.9×10 ⁻⁵	78.6 µm	0.786 mm
10	3.03 mm/s	3.1×10 ⁻⁴	309 µm	3.09 mm
50	7.47 cm/s	7.6×10 ⁻³	7.62 mm	76.2 mm

$$F_{L(Saff)} = 1.615\rho v^{1/2} d^2 (u^{f} - u^{p}) \left| \frac{du^{f}}{dy} \right|^{1/2} sgn(\frac{du^{f}}{dy})$$

Saffman Lift Force Constraints Clarkson University

$$R_{es} = \frac{|u^{f} - u^{p}|d}{v} << 1$$

$$R_{eG} = \frac{\dot{\gamma}d^2}{\nu} << 1$$

$$\varepsilon = \frac{R_{eG}^{1/2}}{R_{es}} >> 1$$

- Introduction to Aerosols
- Drag Forces
- Cunningham Corrections
- Lift Forces
- Brownian Motion
- Particle Deposition Mechanisms
Turbulence Deposition Theories Clarkson

Mass Flux

$$u_{D}^{+} = \frac{u_{D}}{u^{*}} = \frac{1}{u^{*}} (\frac{J}{C_{0}})$$

 $=\frac{C}{C_0}$

$$\mathbf{D}^{\mathrm{T}} = \mathbf{v}^{\mathrm{T}} \qquad \mathbf{D}^{\mathrm{T}+} = \mathbf{v}^{\mathrm{T}+}$$

Friedlander and Johnstone Nodel (Fee Fight)ClarksonEddy DiffusivityFriedlander and
Johnstone (1959)
$$D^{T+} = v^{T+} = \begin{cases} (\frac{y^+}{14.5})^3 & 0 \le y^+ \le 5 \\ \frac{y^+}{5} - 0.959 & 5 \le y^+ \le 30 \end{cases}$$
 $C(s^+ + \frac{d^+}{2}) = 0$
Stopping DistanceFree Flight Velocity

$$U_{f} = 0.9u^{*} = 0.9\overline{U}\sqrt{\frac{f}{2}} \qquad f =$$

$$f = C_f = \frac{\tau_0}{0.5\rho \overline{U}^2}$$

Turbulence Deposition Theories Clarkson

Comparisons of Turbulence Deposition Model

Clarkson

University

Limitations of Free-Flight Models

- Use of the concept of 'stopping distance' as a sink boundary condition for particle
- Assumptions for free-flight velocity
- Equality of particle mass diffusivity to the turbulence eddy diffusion.
- Ignoring the effects of density ratio, Reynolds number, and scales of turbulence.
- Ignoring the effects of lift force.
- Ignoring the effects of coherent eddies and bursting phenomena.

Turbulence Near arkson

University

Bursting Phenomena Clarkson

Time Between
Bursts $T_B^+ = 0.65 R_{\theta}^{0.73}$ $\frac{V_0 T_B}{\delta} \approx 5$ Bursts Duration $0.25 T_B$

Cleaver and Yates Model

- Suspended particles diffuse to a certain distance from the wall by turbulent diffusion before being entrained in a down-sweep.
- The flow in a down-sweep may be approximated as a two-dimensional stagnationpoint flow in the sub-layer.
- Only Stokes drag is acting on the particles.

$$u_{\rm D}^{+} = \frac{9}{400} \frac{\rho^{\rm f}}{\rho^{\rm p}} \tau^{+} \exp\{0.48\tau^{+}\} + 0.084 {\rm Sc}^{-2/3}$$

Cleaver-Vates Model Clarkson

Cleaver and Vates Model Clarkson university $v^{+} = v^{f+} - \tau^{+} (v^{f+} \frac{\partial v^{f+}}{\partial y^{+}} + w^{f+} \frac{\partial v^{f+}}{\partial z^{+}})$ Perturbation

$$\mathbf{w}^{+} = \mathbf{w}^{f+} - \tau^{+} (\mathbf{v}^{f+} \frac{\partial \mathbf{w}^{f+}}{\partial \mathbf{y}^{+}} + \mathbf{w}^{f+} \frac{\partial \mathbf{w}^{f+}}{\partial \mathbf{z}^{+}})$$

$$w^{f} = \alpha z \varphi'(\eta)$$
 $v^{f} = -\sqrt{\alpha v} \varphi(\eta)$

$$\phi''' + \phi \phi'' - \phi'^2 + 1 = 0$$

Cleaver and Vates Model Clarkson University

$$\alpha = 0.067 \frac{u^{*2}}{v}$$
 $y^{+} = 10$ $v^{f_{+}} = \frac{1}{2}$

Limiting
Trajectory
$$\ln \frac{z^{+}}{z_{0}} = \int_{\sqrt{\frac{\alpha v}{u^{*2}}y^{+}}}^{\sqrt{\frac{\alpha v}{u^{*2}}y^{+}}} \{\frac{\varphi' - \tau^{+}(\frac{\alpha v}{u^{*2}})(\varphi'^{2} - \varphi\varphi'')}{\varphi + \tau^{+}(\frac{dv}{u^{*2}})\varphi\varphi'}\}dy$$

Fichman et al. Model Clarkson University

Flow Field

$$\mathbf{U}^{+}=\mathbf{y}^{+}$$

$$v^{+} = B\phi = 0.625B^{3}y^{+2}$$

 $\phi = 0.625\eta^{2}, \quad \eta = By^{+}, \qquad B = 0.271$ for $y^{+} \le 2$

$$v^{+} = c\phi = 0.24c - 0.71c^{2}y^{+} \phi = 0.71\eta - 0.24, \qquad \eta = cy^{+}, \qquad c = 0.174$$
 for $2 \le y^{+} \le 7$

$$\begin{array}{l} U^{+} = 0.3 y^{+} + 0.5 \\ v^{+} = c \phi = 0.6 c - c^{2} y^{+}, \ \phi = \eta - 0.6 \end{array} \right\} for \quad 7 \leq y^{+} \leq 30 \\ \end{array}$$

Fichman et al. Model Clarkson University

Deposition Velocity

$$u_{\rm D}^{+} = \frac{1}{2} A_{\rm c} v_{0}^{+}$$

$$A_{c} = \frac{Z_{lim}}{\Lambda/4} = \frac{Z_{lim}^{+}}{\Lambda^{+}/4}$$

$$u_{D}^{+} = \frac{2z_{\lim}^{+}v_{0}^{+}}{\Lambda^{+}}$$

Fichman et al. Model Clarkson

Equations of Motion

$$\tau^{+} \frac{d^{2}x^{+}}{dt^{+2}} = U^{+} - \frac{dx^{+}}{dt}$$

$$\tau^{+} \frac{d^{2} y^{+}}{dt^{+2}} = v^{+} - \frac{dy^{+}}{dt} + K \left(U^{+} - \frac{dx^{+}}{dt} \right)$$

$$\tau^{+} \frac{d^{2}z^{+}}{dt^{+2}} = w^{+} - \frac{dz^{+}}{dt}$$

$$K = \tau^+ L^+$$

Fichman et al. Mode Clarkson University $\frac{6.46\mu \left(\frac{d}{2}\right)^{2}}{\frac{1}{2}} \left(\frac{dU}{dy}\right)^{\frac{1}{2}} = \frac{3.08\mu\dot{\gamma}^{\frac{1}{2}}}{\nu^{1/2}d\rho_{p}}$ $= \frac{dU}{dU}$ Lift Ϋ́ dy $v^{\frac{1}{2}}m_{p}$ $\frac{4z_{\lim}^{+}}{4z_{\lim}^{+}} = \frac{\frac{d^{2}}{4} + (d^{+} + s^{+})s^{+}}{4}$ $s^+ \leq 2$ $s^{+} = \frac{L^{+}\tau^{+2}(u_{po}^{+} - \dot{\gamma}^{+}y_{0}^{+}) + \tau^{+}v_{po}^{+}}{1 - \tau^{+2}L^{+}\dot{\gamma}^{+}}$ Numerical ≥ 2 S^+ Solution

Cleaver and Yates Model Clarkson

Fan-Ahmadi Model Clarkson

Equations of Motion

$$\tau^{+} \frac{\mathrm{d}u^{p^{+}}}{\mathrm{d}t^{+}} = u^{+} - u^{p^{+}} + \tau^{+}g^{+},$$

$$\tau^{+} \frac{\mathrm{d}v^{p^{+}}}{\mathrm{d}t^{+}} = v^{+} - v^{p^{+}} + \tau^{+}L_{1}^{+}(u^{+} - u^{p^{+}}) + \tau^{+}L_{2}^{+}(w^{+} - w^{p^{+}}),$$

$$\tilde{\tau}^{+} \frac{\mathrm{d}w^{p^{+}}}{\mathrm{d}t^{+}} = w^{+} - w^{p^{+}},$$

Fan-Ahmadi Mode

Universi

Fan-Ahmadi Mode

Comparison with Experiments

Smooth Wall

Fan-Ahmadi Model

.21

100.0 S=2000 10^{-1.0} $k^{+} = 2.13$ 10-2.0 • $k^+ = 0.82$ Experimental Data + to -3.0 $k^+ = 2.4, 2.5$ × $k^{+} = 1.8$ ٥ $k^{+} = 0.2$ Δ $k^{+} = 0.7$ × 10-4.0 $k^+ = 0.3, 0.4$ ▲ (from Montgomery and $k^{+} = 0.0$ Corn (1970)) 10^{-5.0} Smooth Wall (from Papavergos and Hedley (1984)) 10^{-6.0} 10^{-2.0} 10^{-1.0} 100.0 10^{1.0} 10^{2.0} τ^+

University

Comparison with Experiments

 τ^+

S 1

Fan and Ahmadi

Empirical Model

$$u_{d}^{+} = \begin{cases} 0.084Sc^{-2/3} + \frac{1}{2} \left[\frac{\left(0.64k^{+} + \frac{d^{+}}{2} \right)^{2} + \frac{\tau_{p}^{+2}g^{+}L_{1}^{+}}{0.01085(1 + \tau_{p}^{+2}L_{1}^{+})} \right]^{1/(1 + \tau_{p}^{+2}L_{1}^{+})} \\ 3.42 + \frac{\tau_{p}^{+2}g^{+}L_{1}^{+}}{0.01085(1 + \tau_{p}^{+2}L_{1}^{+})} \\ \times \left[1 + 8e^{-(\tau_{p}^{+} - 10)^{2}/32} \right] \frac{0.037}{1 - \tau_{p}^{+2}L_{1}^{+}(1 + \frac{g^{+}}{0.037})} \\ 0.14 & \text{otherwise} \end{cases}$$

Empirical Model Predictions

Rough Wall

University

Sublayer Model For Fiber Deposition Clarkson

Ellipsoidal fiber particles

- Non-isometric
- Non-Isotropic behavior
- Orientation dependent

Spherical particles

- Isometric
- Isotropic property
- Orientation independent

Translational Motion

$$m^{p} \frac{d\mathbf{v}}{dt} = \left(m^{p} - m^{f}\right)\mathbf{g} + \mathbf{f}^{h} + \mathbf{f}^{L}$$

Rotational Motion

$$I_{\hat{x}} \frac{d\omega_{\hat{x}}}{dt} - \omega_{\hat{y}}\omega_{\hat{z}} \left(I_{\hat{y}} - I_{\hat{z}}\right) = T_{\hat{x}}^{h}$$

$$I_{\hat{y}} \frac{d\omega_{\hat{y}}}{dt} - \omega_{\hat{z}} \omega_{\hat{x}} \left(I_{\hat{z}} - I_{\hat{x}} \right) = T_{\hat{y}}^{h}$$

$$I_{\hat{z}} \frac{d\omega_{\hat{z}}}{dt} - \omega_{\hat{x}} \omega_{\hat{y}} \left(I_{\hat{x}} - I_{\hat{y}} \right) = T_{\hat{z}}^{h}$$

Fiber Equation of Motion Clarkson University

Drag

$$\mathbf{f}^{h} = \mu \pi a \hat{\hat{\mathbf{K}}} \cdot (\mathbf{u} - \mathbf{v})$$

$$k_{\hat{x}\hat{x}} = k_{\hat{y}\hat{y}} = \frac{16(\beta^2 - 1)}{\left[(2\beta^2 - 3)\ln(\beta + \sqrt{\beta^2 - 1})/\sqrt{\beta^2 - 1}\right] + \beta}$$

$$x_{\hat{z}\hat{z}} = \frac{8(\beta^2 - 1)}{\left[(2\beta^2 - 1)\ln(\beta + \sqrt{\beta^2 - 1})/\sqrt{\beta^2 - 1}\right] - \beta}$$

Equivalent Relaxation Time Shapiro-Goldenberg

$$\tau_{eq}^{+} = \frac{4\beta Sa^{+2}}{9} \left(\frac{1}{k_{\hat{x}\hat{x}}} + \frac{1}{k_{\hat{y}\hat{y}}} + \frac{1}{k_{\hat{z}\hat{z}}} \right) = \frac{2\beta Sa^{+2}}{9} \frac{\ln\left(\beta + \sqrt{\beta^{2} - 1}\right)}{\sqrt{\beta^{2} - 1}}$$

Equivalent Relaxation Time (Fan-Ahmadi)

$$\tau_{eq}^{+} = \frac{4\beta Sa^{+2}}{k_{\hat{x}\hat{x}} + k_{\hat{y}\hat{y}} + k_{\hat{z}\hat{z}}}$$

Hydrodynamic Torque

$$T_{\hat{x}}^{h} = \frac{16\pi\mu a^{3}\beta}{3(\beta_{0} + \beta^{2}\gamma_{0})} \left[\left(1 - \beta^{2}\right) d_{\hat{z}\hat{y}} + \left(1 + \beta^{2}\right) \left(w_{\hat{z}\hat{y}} - \omega_{\hat{x}}\right) \right]$$

$$T_{\hat{y}}^{h} = \frac{16\pi\mu a^{3}\beta}{3(\alpha_{0} + \beta^{2}\gamma_{0})} \left[\left(\beta^{2} - 1\right) d_{\hat{x}\hat{z}} + \left(1 + \beta^{2}\right) \left(w_{\hat{x}\hat{z}} - \omega_{\hat{y}}\right) \right]$$

$$T_{\hat{z}}^{h} = \frac{32\pi\mu a^{3}\beta}{3(\alpha_{0} + \beta_{0})} \left(w_{\hat{y}\hat{z}} - \omega_{\hat{z}} \right)$$

$$\mathbf{f}^{\mathrm{L}} = \frac{\pi^{2} \mu a^{2}}{\nu^{1/2}} \frac{\partial u_{\mathrm{x}} / \partial y}{\left| \partial u_{\mathrm{x}} / \partial y \right|^{1/2}} \left(\hat{\mathbf{K}} \cdot \mathbf{L} \cdot \hat{\mathbf{K}} \right) \cdot \left(\mathbf{u} - \mathbf{v} \right)$$

$$\mathbf{L} = \begin{bmatrix} 0.0501 & 0.0329 & 0.00 \\ 0.0182 & 0.0173 & 0.00 \\ 0.00 & 0.00 & 0.0373 \end{bmatrix}$$

Schematics of Ellipsoidal Fiber Clarkson

Transformation Matrix Clarl and Euler Parameters

Euler Angles

	$\cos\psi\cos\phi - \cos\theta\sin\phi\sin\psi$	$\cos\psi\sin\phi + \cos\theta\cos\phi\sin\psi$	sinψsinθ]
A =	$-\sin\psi\cos\phi - \cos\theta\sin\phi\cos\psi$	$-\sin\psi\sin\phi + \cos\theta\cos\phi\cos\psi$	$\cos\psi\sin\theta$
	sinθsinφ	$-\sin\theta\cos\phi$	cosθ

Euler Parameters

$$\mathbf{A} = \begin{bmatrix} 1 - 2\left(\varepsilon_{2}^{2} + \varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{1}\varepsilon_{2} + \varepsilon_{3}\eta\right) & 2\left(\varepsilon_{1}\varepsilon_{3} - \varepsilon_{2}\eta\right) \\ 2\left(\varepsilon_{2}\varepsilon_{1} - \varepsilon_{3}\eta\right) & 1 - 2\left(\varepsilon_{3}^{2} + \varepsilon_{1}^{2}\right) & 2\left(\varepsilon_{2}\varepsilon_{3} + \varepsilon_{1}\eta\right) \\ 2\left(\varepsilon_{3}\varepsilon_{1} + \varepsilon_{2}\eta\right) & 2\left(\varepsilon_{3}\varepsilon_{2} - \varepsilon_{1}\eta\right) & 1 - 2\left(\varepsilon_{1}^{2} + \varepsilon_{2}^{2}\right) \end{bmatrix}$$

$$\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^3 + \eta^2 = 1$$

Fiber Depositing Velocity - Clark Comparison with Experiment

Fiber Depositing Velocity -Comparison with Experiment

Univ

Experimental Fiber Deposition

Clarkson

University

Aerosol Wind Tunnel

Clarkson University

Test Section of Aerosol Wind Tunnel

Glass Fibers

Governing Equations

 $f_{i} = \frac{2\pi\mu}{\ln(2\beta)} \left[\left(2\delta_{ij} - \frac{\partial x_{i}}{\partial s} \frac{\partial x_{j}}{\partial s} \right) (u_{j} - v_{j}) \right]$

$$\frac{\partial^2 F}{\partial s^2} - F \frac{\partial^2 x_i}{\partial s^2} \frac{\partial^2 x_i}{\partial s^2} = -\left(\frac{\partial f_i}{\partial s} \frac{\partial x_i}{\partial s} + A\rho_p \frac{\partial v_i}{\partial s} \frac{\partial v_i}{\partial s}\right)$$

$$\frac{\partial f_i}{\partial s} \frac{\partial x_i}{\partial s} = \frac{2\pi\mu}{\ln(2\beta)} \left(\frac{\partial u_i}{\partial s} \frac{\partial x_i}{\partial s} - \frac{\partial x_i^2}{\partial s^2} (u_i - v_i) \right)$$

Empirical Equation for Flexible String Deposition

$$u_{d}^{+} = \begin{cases} 0.0234 \times \left[\frac{\beta L^{+2}}{\ln(\beta) + 3} + \frac{0.9e^{0.018\tau_{d}^{+}}}{(\ln(\beta) + 1)e^{(\tau_{d}^{+} - 1)^{3}}} \right] \\ \times \left[\frac{1 + 10e^{-(\tau_{d}^{+} - 13)^{2}/32}}{0.049\beta^{2.5} + 10} \right] & if \ u_{d}^{+} < 0.14 \\ 0.14 & otherwise \end{cases}$$

Sample Trajectories for Flexible String

Sample Trajectories for Flexible String

- Semi-Empirical Models
- **Free Flight Models**
- Flow Structure Models
- Sublayer/Burst Models
- **Deposition on Rough Walls**
- Fiber Deposition
- Flexible Fiber Deposition

<u>Juppulence</u> Clarkson University

Direct Numerical Simulation
Large Eddy Simulation
Stress Transport Model
Two-Equation Models

 ∂X_i

 $U_i, u'_i u'_i, P, \varepsilon$

Stress Transport Model Clarkson University Launder-Reece-Rodi

$\left(\frac{\partial}{\partial t} + U_k \frac{\partial}{\partial x_k}\right) \overline{u'_i u'_j} = -\left[\overline{u'_j u'_k} \frac{\partial U_i}{\partial x_k} + \overline{u'_i u'_k} \frac{\partial U_j}{\partial x_k}\right] - \frac{2}{3} \delta_{ij} \varepsilon$ Dissipation Convection Pr oduction $-c_1 \frac{\varepsilon}{\iota} (\overline{u'_i u'_j} - \frac{2}{3} \delta_{ij} k) + (\varphi_{ij}^{(2)} + \varphi_{ji}^{(2)}) + (\underline{\varphi_{ij}^{(w)} + \varphi_{ji}^{(w)}})$ Wall effects Pr essure-strain $+ c_{s} \frac{\partial}{\partial x_{k}} \left\{ \frac{k}{\epsilon} \left[\overline{u'_{i}u'_{1}} \frac{\partial u'_{j}u'_{k}}{\partial x_{1}} + \overline{u'_{j}u'_{1}} \frac{\partial \overline{u'_{k}u'_{1}}}{\partial x_{1}} + \overline{u'_{k}u'_{1}} \frac{\partial u'_{i}u'_{j}}{\partial x_{1}} \right] \right\}$ Diffusion

Dissipation

- Direct Numerical Simulation
- Subgrid Scale Simulation
- **Gaussian Models**
 - Filtered White Noise
 - Eddy Life Time
- Pdf Based Model

Lagrangian Time Macro-Scale

$$T_{L} = \int_{0}^{\infty} \frac{\overline{u'^{p}(t)u'^{p}(t+\tau)}}{\overline{u'^{p}u'^{p}}} d\tau$$

Instantaneous Velocity

Iliopoulos et al. (2003) and Dehbi (2008) included the drift term

$$Stk = \frac{\tau_p}{T_L}$$

Joint Velocity, Velocity-Gradient pdf

$$\begin{split} \frac{\partial \mathbf{f}}{\partial \mathbf{t}} &= -\mathbf{U}_{i} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{i}} + \frac{\partial \langle \mathbf{p} \rangle}{\partial \mathbf{x}_{i}} \frac{\partial \mathbf{f}}{\partial \mathbf{U}_{i}} + \mathbf{L}_{ij} \frac{\partial}{\partial \mathbf{U}_{i}} \Big[\mathbf{f} \Big(\mathbf{U}_{j} - \langle \mathbf{U}_{j} \rangle \Big) \Big] + \frac{1}{2} \mathbf{C}_{o} \mathbf{v} \mathbf{H}_{jk} \mathbf{H}_{jk} \frac{\partial^{2} \mathbf{f}}{\partial \mathbf{U}_{i} \partial \mathbf{U}_{i}} \\ &- \frac{\partial}{\partial \mathbf{H}_{ij}} \Big[\mathbf{M}_{ij} \mathbf{f} \Big] + \frac{1}{2} \frac{\partial^{2}}{\partial \mathbf{H}_{kl} \partial \mathbf{H}_{pq}} \Big[\mathbf{D}_{ijkl} \mathbf{D}_{ijpq} \mathbf{f} \Big] \\ \mathbf{L}_{ij} &= \mathbf{G}_{ij} - \frac{3}{4} \mathbf{C}_{o} \Big(\omega - \langle \omega \rangle \Big) \mathbf{B}_{ij}^{-1} \\ \mathbf{G}_{ij} &= \frac{\varepsilon}{k} \Big(\alpha_{1} \delta_{ij} + \alpha_{2} b_{ij} + \alpha b_{ij}^{2} \Big) + \mathbf{H}_{ijkl} \frac{\partial \langle \mathbf{u}_{k} \rangle}{\partial \mathbf{x}_{1}} \end{split}$$

$$\mathbf{H}_{ij} = \beta_2 \delta_{ik} \delta_{jl} + \beta_3 \delta_{il} \delta_{jk} + \gamma_5 b_{ik} \delta_{jl} + \gamma_6 b_{il} \delta_{jk}$$

Langevin's Equation for Velocity and Velocity Gradient

$$\mathbf{b}_{ij} = \frac{\left\langle \mathbf{u}_{i} \mathbf{u}_{j} \right\rangle}{\left\langle \mathbf{u}_{k} \mathbf{u}_{k} \right\rangle} - \frac{1}{3} \delta_{ij}.$$

11

$$M_{ij} = \frac{h_{ij} - H_{ij}}{T_{\eta}}.$$

 ∂x_i

$$du_{i} = -\frac{\partial \langle p \rangle}{\partial x_{i}} dt + L_{ij} \cdot (u_{j} - \langle u_{j} \rangle) dt + (C_{o} \varepsilon)^{1/2} dW_{i},$$

$$dh_{ij} = -M_{ij} dt + D_{ijkl} dW_{kl} \qquad \qquad h_{ij} = \frac{\partial u_{i}}{\partial x}$$

Haworth and Pope (1986), Girimaji and Pope (1990), Kvasnak et al. (2004)

Assumptions: Dilute Flows, One-Way Interaction, Neglect Particle Collisions

Gravitational Electric force

$$C_{\rm D} = \frac{24[1+0.15\,{\rm Re}^{0.687}]}{{\rm Re}}$$

force

Brownian

force

Ounis, Ahmadi and McLaughlin (1991)

Particle Deposition in a Duct Clarkson

Quadratic Variation Near Wall

Hinze, 1975
$$\sqrt{v'^2} \propto y^2$$
 $y \rightarrow 0$
 $v^+ = Ay^{+2}$ $y^+ < 4$

$$y^{+} = \frac{yu^{*}}{v} \qquad \qquad v^{+} = \frac{\sqrt{\overline{v^{\prime 2}}}}{u^{*}}$$

A = 0.008

Li and Ahmadi, 1993

Ounis, et al. 1993 (DNS)

Dehbi, 2001

Abouali et al., 2013

RSM with two-layer vs. near wall correction by Li & Ahmadi (1993)

Fiber Transport and Deposition

Equivalent Spheres Diameter Clarkson

Equivalent Volume

Equivalent Stokes diameter Shapiro and Goldenburg (1993)

Equivalent Stokes diameter Fan and Ahmadi (1995)

Equivalent Aerodynamic diameter, Stober (1972)

$$d_{ev} = 2a\beta^{\frac{1}{3}}$$

$$d_{stokes_Shapiro} = 2a\sqrt{\frac{\beta\ln(\beta + \sqrt{\beta^2 - 1})}{\sqrt{\beta^2 - 1}}}$$

$$d_{stokes_Fan} = 6a\sqrt{\frac{2\beta}{k_{xx} + k_{yy} + k_{zz}}}$$

$$d_{Aerodynamic_Stober} = d_{ve}\sqrt{\frac{\rho}{\rho_0 \kappa}},$$

$$\begin{split} K_{\hat{x}\hat{x}} &= K_{\hat{y}\hat{y}} = \frac{16(\beta^2 - 1)}{[(2\beta^2 - 3)\ln(\beta + \sqrt{\beta^2 - 1})/\sqrt{\beta^2 - 1}] + \beta}, \\ K_{\hat{z}\hat{z}} &= \frac{8(\beta^2 - 1)}{[(2\beta^2 - 1)\ln(\beta + \sqrt{\beta^2 - 1})/\sqrt{\beta^2 - 1}] - \beta}, \end{split}$$

$$\kappa_{\perp} = \frac{\frac{8}{3}(\beta^{2}-1)\beta^{-\frac{1}{3}}}{\frac{2\beta^{2}-3}{\sqrt{\beta^{2}-1}}\ln(\beta+\sqrt{\beta^{2}-1})+\beta}, \quad \kappa_{\parallel} = \frac{\frac{4}{3}(\beta^{2}-1)\beta^{-\frac{1}{3}}}{\frac{2\beta^{2}-1}{\sqrt{\beta^{2}-1}}\ln(\beta+\sqrt{\beta^{2}-1})-\beta},$$
$$\kappa_{r} = \frac{3\kappa_{\perp}\kappa_{\parallel}}{\kappa_{r}+2\kappa_{\parallel}}$$

Deposition Efficiency-Horizontal Duct Flows

Chen and Yu (1991)

$\eta = \alpha(\beta)\varepsilon$

$$\alpha(\beta) = 1.698(0.28\frac{1}{\kappa_{\mu}} + 0.73\frac{1}{\kappa_{\mu}} - 0.01) \qquad \qquad \varepsilon = \frac{\rho d_{ev}^2 gL}{48U_0 \mu R}$$

Univer

Laminar Flow

Asgharian and Anijilvel (1991)

 $f(\theta,\beta) = \beta^{-0.774} (-0.844\theta^{0} + 14.4\theta^{1} - 22.409\theta^{2} + 16.586\theta^{3} - 5.669\theta^{4} + 0.726\theta^{5})$ $\tau = \frac{\rho g b^{2} \beta C}{18 \mu U_{0}}$

 $\eta = f(\theta, \beta)\tau$

Current Study

$$\eta = \frac{1}{2u^*} \sqrt{\frac{Lgv\tau_{eq}^+}{2RU_0}}$$

$$\eta = \left(\frac{1}{2u^*} \sqrt{\frac{Lg\nu\tau_{eq}^*}{2RU_0}}\right)^{1.5} - \left(\frac{145}{Re}\right)^2 e^{-\tau^*} + \left(\frac{144.65}{Re}\right)^2$$

Fully developed flow

Developing flow

Laminar Flow

Horizontal Laminar Pipe Flow

Ellipsoidal Fiber Sedimentation Velocities Clarkso

Fiber radius =0.5µm, aspect ratio from 1 to 14

Ellipsoidal Fiber Sedimentation Velocities

Unive

Comparison of sedimentation terminal velocities of fibers and equivalent spheres.

Fiber Deposition Rate Clarkson

Deposition rates of glass fibers and the equivalent spheres.

Comparison of deposition rates of the glass fibers in the horizontal pipe in developing flow and in parabolic flow

Deposition in Turbulent Flows

Fiber relaxation Time

$$\tau_{\rm vol}^{+} = \frac{Sd^{+2}\beta^{2/3}}{18} = \tau_d^{+}\beta^{2/3}$$

$$\tau_{eq}^{+} = \frac{m_{p}u^{*2}}{\mu v} \frac{1}{\bar{K}} = \frac{Sd^{+2}}{18} \frac{\beta \ln(\beta + \sqrt{\beta^{2} - 1})}{\sqrt{\beta^{2} - 1}}$$
$$= \tau_{d}^{+} \frac{\beta \ln(\beta + \sqrt{\beta^{2} - 1})}{\sqrt{\beta^{2} - 1}}$$

$$\bar{K} = 3(K_{xx}^{-1} + K_{yy}^{-1} + K_{zz}^{-1})^{-1}$$

β

Fiber Transport and Deposition

Creeping and Non-creeping Models

Laminar Pipe Flow, Q=1.6 L/min, D=4.2mm, L=70cm

Fiber Transport and Deposition Clarkson

Laminar Pipe Flow,

Creeping and Non-creeping Models

a=10μm, β=2 1 0.9 0.8 $\lambda = \frac{\rho_p g \beta d^2}{18 \mu U}$ u, 0.5 0.6 0.4 0.3 0.7 Simulation using creeping flow formulation -B • Simulation using data of Holzer and Sommerfeld (2009) Simulation using correlations of Zastawny et al. (2012) 0.2 Yeh (1979) Pich (1972) 0.1 New correlation, Eq.(44) 0 0.5 2.5 0 1.5 λ, Sedimentation parameter

Laminar Pipe Flow,

Creeping and Non-creeping Models

- Using RANS for simulation of particle and fiber transport needs cares.
- RANS could be used for providing useful information for practical applications.
- Computational modeling could helps in optimizing industrial processes

Collaborators

- Dr. P. Zamankhan
- Dr. L. Tian
- Dr. Kevin Shanley
- Dr. Mazyar Salmanzadeh
- Dr. F-G Fan
- Dr. C. He
- Dr. K. Nazridoust
- Dr. M. Soltani
- Dr. A. Mazaheri
- Dr. H. Zhang
- Dr. H. Nasr

- Prof. J. Tu
- Dr. Kiato
- Prof. Bohl
- Dr. M. Shams
- Prof. McLaughlin
- Prof. Saidi
- Dr. A. Li
- Dr. O. Abouali
- Dr. W. Kvasnak
- Dr. X. Zhang
- Dr. Tavakol

