

COST Action FP1005

Fibre suspension flow modelling

A key for innovation and competitiveness in the pulp & paper industry

2011 | 2015

Objectives

- Main objective: to promote and disseminate validated computer modelling approaches and simulation techniques in papermaking industry.
- Other objectives: Production of a Knowledge Base for simulated and measured data of industrially-relevant test case problems.
- Preparation and publication of Best Practice Guidelines for modelling fibre suspension flows (including a review of experimental methods).
- Survey of state of use of CFD and other numerical methodologies in industry.
- Training for young researchers via workshops, STSMs, training schools.
- Joint projects launched by Action members
- Exchange of experience, sharing good practice in using simulation software, experimental methods, development of research tools.

Main Achievements

- Successful consolidation of effective WG activity through workshops and meetings.
- Production of data for the Knowledge Base Repository in each Action's focus area.
- Continuous improvement of the Action's website which includes (among its features) a dedicated "Knowledge Base Repository" section and a "Job Opportunities" section.
- Development of multi-disciplinary working groups with strong involvement of ESRs.
- Diffuse awareness of expertise and scientific knowledge covered within the Action.
- Rapid set-up and consolidation of networking among participants, especially ESRs, through meetings, workshops, STSMs and training schools.
- Production of joint scientific publications in peer-reviewed journals and conferences Submission of joint projects launched by Action members to Horizon 2020

Working Group 1 - Experimental Methods

- This WG shares information between research groups developing experimental methods for dilute/dense fibre suspensions and non-Newtonian media, combining the best features from different experimental methods to improve measuring techniques.
- Measurements also provide valuable data for: I) non-Newtonian viscosity and multiphase flow modelling in a wide range of consistencies; II) correlations between fibre properties and pulp macro properties (apparent viscosity); use of non-invasive techniques to evaluate fibre suspensions flow characteristics (Tomography, Ultrasonic Doppler Velocimetry, Nuclear Magnetic Resonance, High Speed Imaging).

Working Group 2 - Rheological Modeling

- This WG investigates pulp behavior using single-phase continuum rheology.
- Critical scientific challenges are: I) development of generalized-Newtonian viscosity models and fully non-Newtonian rheology models; II) evaluation of model parameters; III) link fibre-level properties to pulp properties; IV) modeling turbulence damping and modifications caused by fibres and flocs; V) application of the single-phase models to complex suspensions made up of fibres, fillers, retention aids and gases.

Working Group 3 – Multiphase Modeling

- This WG investigates pulp behavior using multi-phase models
- Critical scientific challenges are: I) prediction of fibre orientation and fibre flocculation via Lagrangian simulations; II) production of reliable data for validation of Eulerian models; III) development of Eulerian models for fibre-level and floc-level simulations; IV) assessment of the influence of fibre properties (shapes, surface, stiffness) on model parameters; IV) modelling of fibre-fibre, fibre-wall, fibre-turbulence interactions.

www.cost.eu/fps

Forests, their Products and Services (FPS)

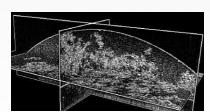
Participating countries

AT, CH, DE, DK, ES, FI, FR, IT, IL, NL, NO, PL, PT, RO, SI, SE, UK

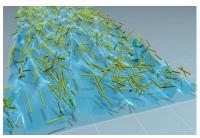
Contact details

Chair of the Action

Cristian Marchioli Assistant Professor CISM (International Centre for Mechanical Sciences) ,Italy marchioli@cism.it


Science Officer

Fatima Bouchama


Science Officer Forests, their Products and Services
COST Office

fatima.bouchama@cost.eu

Website www.fp1005.cism.it/

OCT image of micro fibrillated cellulose (by S. Haavisto, VTT)

Finite-size simulation of dilute fiber suspension flow (by M. Do-Quang, KTH)

COST is supported by the EU RTD Framework Programme

ESF provides the COST Office through a European Commission contract