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2.2 

Boundary and initial 
conditions 

•  Initial conditions. 
•  Boundary conditions 
□  Periodic. 
□  Inflow. 
□  Outflow. 
□  Wall. 



2.3 

Initial conditions 

•  For statistically steady flows the initial conditions are 
relatively unimportant. 
□  Large-amplitude perturbations superposed on a realistic mean flow. 
□  Steady state realization in similar configuration 
□  The flow is allowed to develop until a steady state is reached, then 

statistics can be accumulated. 

•  If the transient is important, realistic initial conditions must 
be used. 
□  Controlled or random perturbations in transitional flows. 
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Initial conditions 

•  Plane channel flow 
•  Initial condition:  
□  Uniform flow  
□  Random noise, 30% amplitude 

•  Monitor: 
□  Wall stress 

□     
□  Velocity and Reynolds stress profiles.   

Z

V
(u2 + v2 + w2)dV
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Initial conditions 

Steady state 
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Initial conditions 

Steady state 



2.7 

Periodic b.c.s 

•  Require that  

•  Equivalent to having an infinite  
sequence (in the periodic direction)  
of the basic box 
 
 
 

•  Valid for fully-developed flows (pipe, plane channel….) 
•  If applied to spatially-developing flows result in temporal 

(instead of spatial) development. 

L    

f(x) = f(x+ L)
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Periodic b.c.s 

•  Domain length must be large 
enough to accommodate longest structure expected in the 
flow:   
  

•  Can be checked after the fact  
through the two-point correlation: 
□  If it does not reach zero at L/2 the 

domain is too short. 

•  Must be checked for each variable. 

L    
L > 2�

max
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Periodic b.c.s 

•  Example: mixing layer 
□  Early times 



2.10 

Periodic b.c.s 

•  Example: mixing layer  
□  Early times 



2.11 

Periodic b.c.s 

•  Example: mixing layer  
□  Intermediate times 
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Periodic b.c.s 

•  Example: mixing layer  
□  Late times 
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Outflow b.c.s 

•  Equations are parabolized in a “buffer region”. 
•  Often coupled with Orlanski outflow conditions. 
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Outflow b.c.s 

•  I. Orlanski   
J. Comput. Phys. 21,  
251 (1976). 
 
 
 
 
 

•  Uc = component ⊥  
to boundary or 

•  Uc from mass balance 
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Outflow b.c.s 

•  I. Orlanski   
J. Comput. Phys. 21,  
251 (1976). 
 
 
 
 
 

•  Uc = component ⊥  
to boundary or 

•  Uc from mass balance 
•  Add “sponge layer” at the end of the domain to remove 

reflections 
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Wall boundary conditions 

•  To apply the no-slip conditions, the wall layer must be fully 
resolved: 
□  First grid point at y+<1. 
□  Reynolds-stress producing events are resolved by the grid (streaks, 

near-wall eddies…): 
     Δx+ ≈ 5-20. Δz+≈2-5. 

□  High aspect-ratio grid cells near the wall. 
□  As Re→∞ the percentage of points required to resolve the near-wall 

layer → 100%. 



2.17 

Inflow conditions 

•  DNS and LES requires an unsteady, three-dimensional 
velocity field at the inflow plane. 
□  Experiments only yield mean values → Matching DNS to exp. is 

difficult. 



2.18 

Inflow conditions 

•  Existing methods: 
□  Inflow from a separate calculation (w/ 

or w/o rescaling)  
- Requires that the inlet be in an 
“equilibrium region”. 
-  Increases the computational cost and 

storage requirement. 

Spatially 
developing 
channel flow. 
Inflow from a 
precursor 
simulation 
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Inflow conditions 

•  Existing methods: 
□  Inflow from a separate calculation (w/ 

or w/o rescaling) 
□  Superposition of mean profiles with 

random fluctuations.  
- Requires long transition distances for 

the flow to redevelop. 

Spatially 
developing 
channel flow. 
Inflow from 
synthetic 
turbulence. 
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Inflow conditions 

•  Existing methods: 
□  Inflow from a separate calculation (w/ or w/o rescaling) 
□  Superposition of mean profiles with random fluctuations. 
□  Recycling-Rescaling 
- Requires that the inlet be in an “equilibrium region” and known scaling 

laws. 
-  Increases the computational cost and memory requirement. 
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Inflow conditions 

•  Existing methods: 
□  Inflow from a separate calculation (w/ 

or w/o rescaling) 
□  Superposition of mean profiles with 

random fluctuations. 
□  Recycling-Rescaling 
□  Controlled forcing  
- Speeds up the development of realistic 

turbulence from random fluctuations. 

Spatially 
developing 
channel flow. 
Inflow from 
synthetic 
turbulence 
with 
controlled 
forcing. 
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Effect of inflow conditions 

•  Finite volume unstructured code (2nd-order). 
•  Locally refined mesh. 
•  Immersed-boundary method. 
•  Problem: heated cylinder 

inside a channel. 
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Effect of inflow conditions 
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Effect of inflow conditions 

Effect of grid resolution 
Temperature contours 

Finer 
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Effect of inflow conditions 

Effect of grid resolution 
Streamwise velocity contours 
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Effect of inflow conditions 

Effect of grid resolution 
Streamwise velocity contours 
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Outline 

•  Motivation:  
•  Simulation methodologies 
•  Governing equations 
•  Boundary conditions 

•  Subfilter-scale modelling 
•  Validation of an LES 
•  Applications 
•  Challenges 

•  Conclusions 
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Outline 

•  Motivation:  
•  Simulation methodologies 
•  Governing equations 
•  Boundary conditions 
•  Subfilter-scale modelling 
□  Modelling considerations 
□  Overview of SFS models 
- Eddy-viscosity models 
- Scale similar and mixed models 
- Dynamic models 
- Deconvolution models 
-  Implicit LES 

•  Validation of an LES 
•  Applications 
•  Challenges 
•  Conclusions 
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K = cutoff wavenumber ∝ 1/∆  (filter width) 

Modelling considerations 

•  LES velocity fields contain substantially more information 
than RANS solutions (frequency, wavenumber). 

•  This information  
can be used to  
improve SFS  
models. 
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Modelling considerations 

•                              are the SFS stresses that require 
closure. 

•  They are due mostly to  
the small  scales, but  
may have some  
large-scale contribution  
as well. 
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 Energy transfer mechanisms 

•  Large scales set the dissipation level: 
  

•  Energy is transferred from the large scales to the small 
ones by the SFS Diffusion + SFS Dissipation. 

•  The subfilter scales provide the dissipation into heat. 

Resolved scales Heat Subfilter scales 
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Subfilter-scale modelling 

•  Two types of energy-exchange mechanisms are important: 
□  Local (in wave-number) interactions. 
□  Distant interactions 



2.33 

Eddy-viscosity models 

•  Most common choice: eddy-viscosity model. 
 
 
 

•  The eddy viscosity νT has dimensions 
  
 

•  The most active SFS scales are those close to the cutoff 
(i.e., the filter-width)  
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Equilibrium assumption 

Subfilter scales 
�⌧ijSij " ⇠ q3sfs/�

Production of 
SFS TKE 

Viscous 
dissipation of 

SFS TKE 

Smagorinsky (1963);  Lilly (1967) 

q2sfs ⇠ ⌧kk ⇠ (�|S|)2 ) ⌫T = (CS�)2S|
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Smagorinsky model 

•    
•  Since the constant CS (the Smagorinsky constant) is real, 

the model is absolutely dissipative: 

⌫T = (CS�)2S|

"sfs = ⌧ijSij(CS�)2S|3  0



2.36 

Smagorinsky model 

•  To evaluate CS assume a spectrum with an inertial range: 
 
 

•  Integrate the dissipation spectrum k2E(k) over all resolved 
wave-numbers: 
 
 
 

•  With CK=1.41 this gives CS ≅ 0.18. 
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2.37 

Smagorinsky model 

•  Predicts overall dissipation fairly accurately  
□  Except near solid walls, during transition or re-laminarization or in 

other cases in which the small scales are not in equilibrium. 

•  Does not account for local interactions. 
•  The Smagorinsky constant needs to be adjusted in the 

presence of shear,  in transitional flows, near solid walls 
etc. 
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E ∼  k 
- 5/3 

E ∼ k 
- 8/3 

E ∼ k 
- 2/3 

Two-point closures 

•  Eddy viscosity in wave space 
□  Plateau: distant interactions. 
□  Peak: local interactions. 

•  Chollet-Lesieur (1981)  EDQNM eddy-viscosity: 

b⌫(k) = C�3/2
K [0.441 + 15.2 exp (�3.03km/k)] [E(km)/km]

1/2
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Structure-function model 

•  The EDQNM eddy viscosity must be implemented in 
spectral space.  

•  Métais & Lesieur (1992) derived the structure function 
model, that can be implemented in real space. 



2.40 

Structure-function model 

•  Express the spectrum E(km) in terms of the second-order 
structure function 
 
 
where <•> is an ensemble-average taken over all points 
such that             . 

•  This gives 
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Structure-function model 

•  Smagorinsky-like model. Strain-rate replaced by velocity 
gradient.   

•  For isotropic flows, the model is less dissipative than the 
Smagorinsky model. 

•  For sheared flows the structure function may be 
excessively dissipative. 

•  Improved results were obtained by applying a Laplacian 
filter to remove the contribution of the largest eddies to the 
velocity gradient before computing the structure function 
(Ducros et al. 1996). 
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Scale-similar and mixed 
models 

•  Scale-similar models are 
based  on  the following 
assumptions  (Bardina et al. 
1980): 
□  The most active subfilter scales 

are those closer to the cutoff. 
□  The scales with which they 

interact most are those right 
above the cutoff. 
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Scale-similar and mixed 
models 

•  The largest subfilter scales 
can be obtained by filtering 
the SFS velocity                        
to obtain                     

•  A Smagorinsky model is 
added to represent the 
dissipative effect of the 
small scales, to give 
 
 
□  CB=1 to assure Galilean 

invariance 
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Scale-similar and mixed 
models 

•  Give improved results when graded filters are used. 
•  Provide an estimate of the SFS energy τkk. 
•  Account for the correlation between the resolved Reynolds 

stress producing events and the SFS energy transfer (local 
energy transfer). 

•  Can be coupled to dynamic eddy-viscosity contributions 
(Zang et al. 1993). 
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Dynamic models 

•  Consider the identity 
 

•  The resolved turbulent stresses  
Lij are the contribution from  
the region between test-filter  
and grid-filter scale. 

•  The subtest stresses 
                              
are obtained by applying the test filter      to the filtered 
Navier-Stokes equations. 

Lij ⌘ duiuj � bui buj = Tij � b⌧ij ,

Tij ⌘ duiuj � bui buj
bG
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Dynamic models 

•  Substituting for the subfilter and the subtest stresses                                         
into the identity yields a system of equations for the model 
coefficient C. 
 
 

•  The identity can be satisfied only approximately, since the 
real stresses are replaced by modelling assumptions. 

•  Lilly (1992) proposed an error minimization that gives 
 
 
 
where the brackets indicate an appropriate average. 
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Dynamic models 

•  This procedure can be applied to mixed models, or models 
with more than one coefficient. 

•  The model gives vanishing eddy viscosity in laminar flows, 
and has the correct near-wall behaviour. 

•  The ensemble average ⟨·⟩ has the purpose of removing 
sharp fluctuations of the coefficient. 
□  Germano et al. (1991) used volume or plane averages. 
□  Ghosal et al. (1995) used an integral formulation. 
□  Meneveau et al. (1996) proposed a Lagrangian ensemble-average 

calculating following the fluid particle. 
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Deconvolution models 

•  If a filter G could be inverted, one could obtain the 
unfiltered velocity from the filtered one: 
      

•  The SFS stresses could then be computed directly:    
 

•  Filters with compact support are not invertible. 

•  Deconvolution models try to obtain an approximation      to                  
  by an approximate deconvolution process. 

•  The SFS stresses are then computed as:    
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Deconvolution models 

•  Scale-similar models: 
•  Shah and Ferziger (1995): obtained       as a truncated 

Taylor series of 
•  Domaradzki and co-workers (1997-2000) Subgrid-Scale 

Estimation model: 
□  Deconvolve the filtered velocity onto a finer grid by interpolation 

(inversion of the tophat filter). 
□  Generate new scales by an approximate integration of a linearized non-

linear term. 
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Deconvolution models 

•  Stolz and co-workers (1999, 2001) Approximate 
Deconvolution Model: 
□  Approximate the filter as a truncated series: 
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Implicit LES 

•  The numerical method provides the dissipation 
•  Relate the truncation error to the resolved field 
•  Derive an Effective SFS model 
•  Truncation errors, Commutation errors and SFS stresses 

are taken into account together 
•  Every numerical method is associated with some SFS 

modelling ansatz 
□  Simple upwind methods: not so good 
□  Non-Oscillatory Finite Volume schemes are better. 


