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This article introduces a high-accuracy discrete singular convolution (DSC) for the nu-
merical simulation of coupled convective heat transfer problems. The problem of a buoy-
ancy-driven cavity is solved by two completely independent numerical procedures. One is a
quasi-wavelet-based DSC approach , which uses the regularized Shannon’s kernel, while the
other is a standard form of the Galerkin � nite-element method. The integration of the
Navier–Stokes and energy equations is performed by employing velocity correction-based
schemes. The entire laminar natural convection range of 103 µ Ra µ 108 is numerically
simulated by both schemes. The reliability and robustness of the present DSC approach is
extensively tested and validated by means of grid sensitivity and convergence studies. As a
result, a set of new benchmark quality data is presented. The study emphasizes quantitative,
rather than qualitative comparisons.

I. INTRODUCTION

Convection by natural means is crucial to ¯ ows, in both nature and technol-
ogy. There are a variety of real-world applications of natural convection, such as
thermal insulation, cooling of electronic equipment, solar energy devices, nuclear
reactors, heat-recovery systems, room ventilation, crystal growth in liquids, etc. The
¯ uid ¯ ow and heat transfer behavior of such systems can be predicted by the mass,
momentum, and energy conservation equations with appropriate boundary condi-
tions. The fast-emerging branch of computational ¯ uid dynamics (CFD) facilitates
the numerical simulation of ¯ uid ¯ ow and heat transfer features. A comprehensive
analysis of the ¯ uid ¯ ow and heat transfer patterns in fundamentally simple geo-
metries, such as the buoyancy-driven square cavity, is a necessary precursor to the
evolution of better designs for more complex industrial applications.

Jones [1] has proposed the problem of a buoyancy-driven cavity as a suitable
vehicle for testing and validation of computer codes for thermal problems. The
simplicity of the geometry and the clarity in boundary conditions render this problem
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more appealing for new computational algorithms. In the early 1980s, this problem
was solved by a number of di� erent groups and their results were extensively sum-
marized in the standard reference by de Vahl Davis and Jones [2]. De Vahl Davis [3]
used forward di� erence for the temporal discretization and second-order central
di� erence for the spatial discretization, to solve the stream function-vorticity form of
the equations. The resulting algebraic equations were solved by an alternating-
direction implicit (ADI) algorithm. Although the solution obtained was among the
best of those days, the data presented were limited to a Rayleigh number (Ra) of 106.
It is pertinent to quote Professor de Vahl Davis from his seminal article [3]:

It is hoped that it will lead to further contributions to the search for e� cient and
high accuracy methods for problems of this type.

Even after nearly two decades, this statement remains sacrosanct, despite the phe-
nomenal progress in numerical methods. A variety of computational algorithms has

NOMENCLATURE

B frequency bound
C Courant number
E error
g acceleration due to gravity
Gr Grashof number (ˆ gbDyL 3

ref=n2)
L ref reference length dimension (either width

or height)
L 2 error norm
Nu Nusselt number
Nu average Nusselt number
p nondimensional pressure (ˆ ppL 2

ref =ra2)
pp dimensional pressure
Pec cell Peclet number (ˆ uDx=n)
Pr Prandtl number (ˆ n=a)
r ratio of s over D
Ra Rayleigh number (ˆ gbDyL 3

ref=na)
Rs…x† delta regularizer
tt dimensional time
t nondimensional time (ˆ tta=L 2

ref )
u nondimensional horizontal velocity

(ˆ uuL ref=a)
uu dimensional horizontal velocity
U nondimensional velocity vector (u;v)
v nondimensional vertical velocity

(ˆ vvL ref=a)
vv dimensional vertical velocity
W bandwidth of support on one side

of the grid point
xx dimensional horizontal coordinate
x nondimensional horizontal coordinate

(ˆ xx=L ref )
xk discrete sampling points around the

point x
y nondimensional vertical coordinate

(ˆ yy=L ref )

yy dimensional vertical coordinate
a thermal di� usivity of the ¯ uid
a1;a2;a3

constants used in the Runge± Kutta
scheme [Eqs. (33) , (34) , (35)]

b1;b2;b3
constants used in the Runge± Kutta
scheme [Eqs. (33) , (34) , (35)]

D grid spacing, incremental value
dD…x†;dD;s…x†

convolution kernels
E a small parameter
Z variable of interest
y nondimensional temperature

[̂ …yy ¡ yC†=…yH ¡ yC†]
n kinematic viscosity
r density
s width of the Gaussian envelope
f potential function
o relaxation parameter
yy dimensional temperature
H gradient

Subscripts
C cold wall
H hot wall
i; j indices in the horizontal and vertical

direction, respectively

Superscripts
¤ intermediate ® eld value
l;n iteration labels
q order of the derivative
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been tested on this problem and the vast amount of literature is a testimony to this
[1± 10]. For example, Hortmann et al. [4] have employed a ® nite-volume-based
multigrid technique for the simulation of a buoyancy-driven cavity. Ramaswamy
et al. [8] have investigated the performance of two explicit and one semi-implicit
projection-based schemes. They have concluded that the semi-implicit scheme always
outperforms the two explicit schemes considered by them. In their numerical in-
vestigations, a variety of benchmark problems were solved, including the buoyancy-
driven cavity. Shu and Xue [9] employed a global method of generalized di� erential
quadrature (GDQ) for solving the stream function-vorticity form of the Navier-
Stokes (N-S) equations. Massarotti et al. [5] used a semi-implicit form of the char-
acteristic-based split scheme (CBS) with equal-order interpolation functions for all
the variables. Manzari et al. [7] developed an arti® cial di� usion-based algorithm for
3-D compressible turbulent ¯ ow problems. This was later extended to 2-D laminar
heat transfer problems. The basic idea of Manzari [6, 7] involves modi® cation of
continuity equation by employing the concept of arti ® cial compressibility. Recently,
Mayne et al. [10] employed an h-adaptive ® nite-element method to ensure a very
accurate solution for the thermal cavity problem. Despite so much e� ort on this
problem, there still exist some variations and discrepancies in the available literature
(see the detailed discussion in Section III). Inherently, numerical results are ap-
proximations. Their accuracy and reliability depends vitally on the underlying
computational method and the numerical scheme. Hence, further advances in
computational methodology are crucial to the thermal cavity problem as well as
other heat transfer problems.

A variety of computational methods are available in the literature. In a broad
sense they can be classi® ed into global and local methods. Global methods approx-
imate a di� erentiation at a point by all grid points in the computational domain and
can be highly accurate. Spectral methods, pseudo-spectral methods, fast Fourier
transforms, and di� erential quadrature come under this category. For example,
spectral methods converge exponentially with mesh re® nement for approximating an
analytical function and thus have the potential to be used in high-precision and de-
manding large-scale computations. Many global approaches have been successfully
applied to the study of ¯ uid ¯ ow and heat transfer in simple geometries, such as
cavities, channels, ducts, di� users, etc. However, global methods have limited cap-
ability in handling irregular geometries and more complex boundary conditions. In-
deed, local methods, such as ® nite di� erences, ® nite-elements, ® nite strips, and ® nite
volumes, are the most popular approaches for solving engineering problems. Local
methods utilize information from the nearest neighboring grid points to approximate
the di� erentiation at a point and thus are much more ¯ exible. However, local methods
converge slowly with respect to mesh re® nement and are not cost-e� ective for
achieving high precision. Hence, there is a strong demand for a scheme which can
exploit the advantages of both methods. To this end, a high-accuracy quasi-wavelet-
based approach, the discrete singular convolution (DSC), was proposed [13]. This
method is a promising approach for the numerical realization of singular convolutions
[14, 15]. Mathematical foundation for this algorithm stems from the theory of dis-
tributions (or generalized functions). Sequence of approximations to the singular
kernels of Hilbert type, Abel type, and delta type can be constructed. Numerical
solution to di� erential equations are formulated via singular kernels of delta type.
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The DSC approach exhibits global methods’ accuracy for integration and
local methods’ ¯ exibility in handling irregular geometries and complex boundary
conditions, when suitable DSC kernels are chosen. Many DSC kernels, such as
(regularized) Shannon’s delta kernel, (regularized) Dirichlet kernel, (regularized)
Lagrange kernel, and (regularized) de la ValleÂ e Poussin kernel, are constructed for
a number of applications, such as numerical solution of the Fokker± Planck
equation [14, 15] and the SchroÈ dinger equation [16]. The DSC algorithm was also
utilized for waveguide model analysis, electromagnetic wave propagation [17], and
structural (plate and beam) analysis [18± 20] with excellent results. Most recently,
the DSC algorithm was used to resolve a few numerically challenging problems.
The integration of the (nonlinear) sine-Gordon equation [21] with the initial values
close to a homoclinic orbit singularity is one such problem for which conventional
local methods have encountered great di� culty and numerically induced chaos was
reported [22]. Another complex problem that has been resolved by using the DSC
algorithm is the integration of the (nonlinear) Cahn± Hilliard equation in a circular
domain [23], which is challenging because of the fourth-order arti® cial singularity
at the origin and complex phase-space geometry. DSC solution of machine preci-
sion to the Navier± Stokes equations with periodic boundary conditions for the
Taylor problem was obtained with 33 grid points in each dimension [15, 18].
Recently, a DSC ® nite-subdomain method was proposed for the solution of in-
compressible viscous ¯ ows under complex geometries [24].

The objectives of the present study are the following: (1) To introduce the
highly accurate quasi-wavelet-based discrete singular convolution [15, 18] for the
numerical simulation of coupled convective heat transfer problems; (2) to present
benchmark-quality data for the entire laminar natural-convection range of
103 µ Ra µ 108; and (3) to present a focused and elaborate study on the problem
of the buoyancy-driven cavity, which also looks into some of the discrepancies
observed in the literature. The high level of accuracy that could be achieved for
the Taylor problem [15, 18] enhances the level of con® dence and reliability for the
simulation of the driven-cavity problem. The DSC code is extensively tested
and further validated with a second-order-accurate ® nite-element-based Galerkin
method, against the available numerical simulations of [3± 10].

This article is organized into four sections. A description of the problem
under investigation and the methods of solution by both DSC and FEM are
presented in Section II. An elaborate and focused study on the results obtained for
the buoyancy-driven cavity is presented in Section III. Conclusions are presented in
Section IV.

II. THEORETICAL BACKGROUND AND METHODS OF SOLUTION

This section de® nes the buoyancy-driven cavity problem, including the gov-
erning partial di� erential equations (PDEs) and the boundary conditions. Two
completely independent methods of solution, viz., a quasi-wavelet-based approach
and a ® nite-element method, are employed to solve the problem under investigation.
The theoretical framework behind the discrete singular convolution is elaborated.
The method of solution for the integration of the Navier-Stokes and energy equa-
tions by the DSC and FEM is explained.
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A. Problem Descript ion

A di� erentially heated, closed square cavity is depicted in Figure 1, whose left
and right vertical walls are maintained at yH and yC, respectively. The horizontal
walls are adiabatic (insulated, and there is no transfer of heat through these walls).
Fluid is assumed to be viscous, incompressible, Newtonian, and Boussinesq-
approximated. The Newtonian assumption guarantees a linear relationship between
the shear stress and the velocity gradient. The Boussinesq approximation means that
the density di� erences are con® ned to the buoyancy term, without violating the
assumption of incompressibility. It should be pointed out that there is an additional
coupling term in the momentum equations, which indeed dictates the ¯ uid motion
within the cavity.

1. Governing equat ions. The governing PDEs are the coupled mass, mo-
mentum, and energy conservation equations, applicable for two dimensions. The
equations are given as

Continuity:
qu
qx

‡ qv
qy

ˆ 0 …1†

Figure 1. Flow domain of interest.
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x momentum:
qu
qt

‡ u
qu
qx

‡ v
qu
qy

ˆ ¡ qp
qx

‡ Pr
q2u
qx2 ‡ q2u

qy2

³ ´
…2†

y momentum:
qv
qt

‡ u
qv
qx

‡ v
qv
qy

ˆ ¡ qp
qy

‡ Pr
q2v
qx2 ‡ q2v

qy2

³ ´
‡ Ra Pr y …3†

Energy:
qy
qt

‡ u
qy
qx

‡ v
qy
qy

ˆ q2y
qx2 ‡ q2y

qy2
…4†

In the equations above, the following nondimensionalization was employed:

x ˆ xx
L ref

y ˆ yy
L ref

u ˆ uuL ref

a
v ˆ vvL ref

a
t ˆ tta

L 2
ref

…5†

p ˆ ppL 2
ref

ra2 y ˆ yy ¡ yC

yH ¡ yC
Ra ˆ gbDyL 3

ref

na
Pr ˆ n

a
…6†

In convection, density di� erences generate an additional force (popularly known as
the buoyancy force), which competes with the inertial and viscous forces. The ratio
of buoyancy to viscous forces is given by the parameter Grashof number (Gr), which
controls natural convection. On the other hand, the ratio of momentum to thermal
di� usivity, known as Prandtl number (Pr), governs the temperature ® eld and its
relationship with the ¯ uid ¯ ow characteristics. Rayleigh number (Ra), which is the
parameter of interest, is the product of these two dimensionless groups.

2. Boundary condit ions. No-slip velocity boundary condition (u ˆ v ˆ 0:0)
is applied on all four walls of the square cavity. For temperature, Dirichlet boundary
conditions of yH ˆ 1:0 and yC ˆ 0:0 are enforced on the left and right vertical walls,
respectively. As there is no transfer of heat through the horizontal walls, a Neumann
boundary condition (qy=qy ˆ 0:0), is applied.

3. The laminar-flow region. According to Incropera and Dewitt [11], the la-
minar natural convection at a local Rayleigh number larger than 109 may be pro-
moted to turbulent transition in the vertical boundary layer. Undoubtedly, the
transition from laminar to turbulence causes an increase in convective heat transfer
on the surface of the wall. In their direct numerical simulation (DNS) of air flow in a
square cavity, Paolucci and Chenoweth [12] detected the existence of a critical Ray-
leigh number between 108 and 2 £ 108, where the flow undergoes a Hopf bifurcation
into a periodic unsteady flow. Therefore, we confine the present simulations to the
lower limit of this Rayleigh number, which is 108. Beyond this value, a Reynolds
averaged form of the Navier± Stokes and energy equations would have to be
employed together with a workable turbulence model.

B. Discrete Singular Convolut ion

1. Approximat ion of singular convolut ion. For the sake of clarity and
integrity in presentation, the section begins with a brief description of the discrete
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singular convolution (DSC) algorithm. Elaborate details are available in previous
studies [14, 15]. The DSC algorithm concerns with the computer realization of the
mathematical distributions. Distributions are not well defined in the usual sense
and may not have any value. Particular examples are kernels of the Hilbert type
and Abel type. These singular kernels are of crucial importance to a number of fields,
such as Radon transform, analytical function theory, linear response theory, etc. For
data (surface) interpolation and solving partial differential equations, singular ker-
nels of delta type are useful. In the DSC algorithm, the function f…x† and its deriva-
tives with respect to the coordinate at a grid point x are approximated by a linear
sum of discrete values { f…xk†} in the narrow bandwidth [x ¡ xW ;x ‡ xW ]. This
can be expressed as

f …q†…x† º
XW

kˆ¡W

d…q†
D;s…x ¡ xk†f…xk† …7†

where superscript q …q ˆ 0;1;2; . . .† denotes the qth-order derivative with respect
to x. The {xk} refers to a set of discrete sampling points centered around the point x.
Here s is a regularization parameter, D is the grid spacing, and 2W ‡ 1 is the total
computational bandwidth, which is usually much smaller than the computational
domain.

In Eq. (7), dD;s…x† is a convolution kernel that approximates the delta dis-
tribution. For band-limited functions, the delta distribution can be replaced by a
low-pass ® lter, hence, many wavelet scaling functions can be used as DSC con-
volution kernels. One interesting example is Shannon’s wavelet scaling function,

dD…x† ˆ sin…px=D†
px=D

…8†

In fact, Shannon’s wavelet scaling function forms a sampling basis for the Paley-
Wiener reproducing kernel Hilbert space. Shannon’ s wavelet scaling is useful in
solving eigenvalue problems with smoothly con® ned potentials [14] and for purely
periodic boundary conditions [21]. However, for general computational problems,
it is important to regularize Shannon’s delta kernel,

dD;s…x† ˆ dD…x†Rs…x† …9†

where Rs…x† is a delta regularizer [13, 14], which can dramatically increase the
regularity of Shannon’ s wavelet scaling function. An often-used delta regularizer is
the Gaussian

Rs…x† ˆ exp ¡ x2

2s2

³ ´
s > 0 …10†

where s determines the width of the Gaussian envelop and can be varied in asso-
ciation with the grid spacing, i.e., s ˆ rD. It should be pointed out that the use
of appropriate regularizers can extend the domain of applicability of delta kernels
to temporal distributions and even to exponentially growing functions [13].
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The expression in Eq. (7) provides extremely high computational e� ciency both on
and o� a grid. In fact, it can provide exact results when the sampling points are
extended to a set of in® nite points for certain band-limited L 2 functions. Qian and
Wei [25] have given a mathematical estimation for the choice of W , r, and D. For
example, if the L 2 error for approximating an L 2 function f…x† is set to 10¡Z, the
following relations would give the best accuracy:

r…p ¡ BD† >
������������
4:61Z

p
and

W
r

>
������������
4:61Z

p
…11†

where r ˆ s=D and B is the frequency bound for the function of interest, f…x†. The
® rst inequality states that for a given grid size D, a large r is required for approx-
imating the high-frequency component of an L 2 function. The second inequality
indicates that if one chooses the ratio r ˆ 3, then the half-bandwidth W º 30 is good
enough to achieve the highest accuracy in double-precision computations (Z ˆ 15) .
By appropriately choosing W , r, and D, the resulting approximation matrix for in-
terpolation and solving the di� erential equations has a banded structure. This en-
sures that the DSC algorithm attains optimal accuracy and e� ciency.

It should be pointed out that although regularized Shannon’s delta kernel is
used to illustrate the DSC approximation of the delta distribution here, there are
a variety of other DSC kernels, such as (regularized) Dirichlet kernels, (regularized)
Lagrange kernels, and (regularized) de la ValleÂ e kernels, which perform equally well
[14, 17, 21]. The grid used in Eq. (7) is uniform because only a single grid spacing is
prescribed. In computations, Eq. (7) is very e� cient since just one kernel is required
for the whole computational domain [a;b] for a given D and r. Thus, the kernel ac-
quires the property of translational invariance. In order to maintain this property near
a computational boundary, the functions f…xk† have to be located outside the com-
putational domain [a;b], where their values are usually unde® ned. Therefore,
it is necessary to create ® ctitious domains outside the computational boundaries. For
the DSC algorithm, function values in these ® ctitious domains are generated ac-
cording to the boundary conditions and the physical behavior of the solution at the
boundaries. For example, when Dirichlet boundary conditions are employed, f…xk† in
the ® ctitious domain can be taken to be either f…a† or f…b†; for a periodic boundary
condition, f…xk† may be enforced by a periodic extension inside the computational
domain [a;b] to outside. Neumann boundary condition for f…xk† may be obtained by
f’…a† or f’…b†.

When the regularized Shannon’s delta kernel is used, the detailed expressions
for d…0†

D;s…x†, d…1†
D;s…x†, and d…2†

D;s…x† can be given analytically as

d…0†
D;s…x† ˆ

sin…px=D† exp…¡x2=2s2†
px=D …x 6ˆ 0†

1 …x ˆ 0†,

(
…12†

d…1†
D;s…x† ˆ

cos…px=D† exp…¡x2=2s2†
x ¡ sin…px=D† exp…¡x2=2s2†

px2=D

¡ sin…px=D† exp…¡x2=2s2†
ps2=D …x 6ˆ 0†

0 …x ˆ 0†

8
>>><

>>>:
…13†
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and

d…2†
D;s…x† ˆ

¡…p=D† sin…px=D† exp…¡x2=2s2†
x ¡ 2 cos…px=D† exp…¡x2=2s2†

x2

¡2 cos…px=D† exp…¡x2=2s2†
s2 ‡ 2 sin…px=D† exp…¡x2=2s2†

px3=D

‡ sin…px=D† exp…¡x2=2s2†
ps2x=D ‡ x sin…px=D† exp…¡x2=2s2†

ps4=D …x 6ˆ 0†

¡ 3‡p2s2=D2

3s2 …x ˆ 0†

8
>>>>>>>>>><

>>>>>>>>>>:

…14†

Once the parameter r is chosen, the coe� cients d…0†
D;s…x†, d…1†

D;s…x†, and d…2†
D;s…x†

depend only on the grid spacing D. Therefore, when the grid spacing is prescribed,
the coe� cients need to be computed only once and can be used during the whole
computation. The good performance of the present DSC algorithm is due to the
unique use of the DSC algorithm both for data interpolation and spatial dis-
cretization of the governing equations. Since the computational bandwidth is user-
de® ned, the approximation accuracy is controllable in the present algorithm [15].

2. Solut ion methodology. For the convenience of presenting the method of
solution, we define the following:

D…U† ˆ
qu
qx

‡
qv
qy

…15†

L …U† ˆ F…U† ¡ Hp …16†

F…U† ˆ [ f; g]T U ˆ [u; v]T Hp ˆ qp
qx

;
qp
qy

µ ¶T

M…y† ˆ [m] …17†

f ˆ Pr
q2u
qx2 ‡ q2u

qy2

³ ´
¡ u

qu
qx

‡ v
qu
qy

³ ´
…18†

g ˆ Pr
q2zv
qx2 ‡ q2v

qy2

³ ´
¡ u

qv
qx

‡ v
qv
qy

³ ´
‡ Ra Pr y …19†

m ˆ q2y
qx2 ‡ q2y

qy2

³ ´
¡ u

qy
qx

‡ v
qy
qy

³ ´
…20†

Therefore, the system of Eqs. (1) ± (4) can be simpli® ed as follows:

D…U† ˆ 0 …21†
qU
qt

ˆ L …U† ˆ F…U† ¡ Hp …22†

qy
qt

ˆ M…y† …23†

A variety of fractional step approaches can be formulated by appropriately
combining convective, viscous, and pressure terms of the momentum Eqs. (21) ± (23).
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When primitive variables are used in the governing PDEs, there is no direct link
between the continuity and momentum equations. To bridge this gap, certain
rearrangement of the momentum equations should be carried out, and thus the
popular Poisson equation for pressure is formulated. In the simulation of Navier±
Stokes equations, ® rst an intermediate velocity is computed by omitting the pressure
gradient, and later, it is corrected by including the same. This seminal idea was
originally introduced by Chorin [26] in a ® nite-di� erence context. Since then, many
special schemes have been designed and developed in this direction. For example,
there is a family of implicit and semi-implicit pressure-correction methods such as the
SIMPLE, consistent SIMPLE (SIMPLEC), and SIMPLER. Moreover, the arti® cial
compressibility method, the marker and cell (MAC) method, the fractional-step
projection method [26] and its many variants are also commonly used in the
literature. In the present investigation, we adopt a fractional time-step and potential-
function method (FTSPFM), which is a variant of the MAC method for solving the
governing Eqs. (21) ± (23). In this approach, an intermediate velocity ® eld and a
potential function are introduced and computed to update the velocity, pressure, and
temperature in the domain.

3. Spat ial discret izat ion. In the present investigation a staggered grid system
is employed. The momentum and energy equations in the horizontal direction is
written at the point …i ‡ 1

2 ; j†, the momentum equation in the vertical direction is
written at the point …i; j ‡ 1

2†, and the pressure and temperature are given at point
…i; j†. The continuity equation is approximated at the point …i; j†. All spatial deriva-
tives in Eqs. (21) ± (23) are discretized by using the DSC approach. A uniform grid
in both x and y directions is employed. The discretized forms of Eqs. (15) ± (20)
can be expressed as follows:

Dh…U† ˆ
XW

kˆ¡W

d…1†
D;s…k Dx†ui‡k; j ‡

XW

kˆ¡W

d…1†
D;s…k Dy†vi; j‡k …24†

Hhp ˆ
XW

kˆ¡W

d…1†
D;s…k Dx†pi‡k; j;

XW

kˆ¡W

d…1†
D;s…k Dy†pi; j‡k

" #T

…25†

fh ˆ Pr
XW

kˆ¡W

d…2†
D;s…k Dx†ui‡1

2‡k; j ‡
XW

kˆ¡W

d…2†
D;s…k Dy†ui‡1

2;j‡k

" #

¡ ui‡1
2; j

XW

kˆ¡W

d…1†
D;s…k Dx†ui‡1

2‡k; j ‡ vi‡1
2;j

XW

kˆ¡W

d…1†
D;s…k Dy†ui‡1

2; j‡k

" #
…26†

gh ˆ Pr
XW

kˆ¡W

d…2†
D;s…k Dx†vi‡k; j‡1

2
‡

XW

kˆ¡W

d…2†
D;s…k Dy†vi; j‡1

2‡k

" #

¡ ui; j‡1
2

XW

kˆ¡W

d…1†
D;s…k Dx†vi‡k; j‡1

2
‡ vi; j‡1

2

XW

kˆ¡W

d…1†
D;s…k Dy†vi; j‡1

2‡k

" #
‡ Ra Pr yi; j …27†
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mh ˆ
XW

kˆ¡W

d…2†
D;s…k Dx†yi‡k; j ‡

XW

kˆ¡W

d…2†
D;s…k Dy†yi; j‡k

" #

¡ ui; j

XW

kˆ¡W

d…1†
D;s…k Dx†yi‡k; j ‡ vi; j

XW

kˆ¡W

d…1†
D;s…k Dy†yi; j‡k

" #
…28†

L h…U† ˆ Fh…U† ¡ Hhp

Fh…U† ˆ [ fh;gh]T Mh…y† ˆ [mh] …29†

where d…1†
D;s and d…2†

D;s are coe� cients of the regularized Shannon’s delta kernel, given
in Eqs. (13) and (14), respectively. Here, the detailed labels (i, j) on U are omitted,
and Dx and Dy denote the grid sizes in the x and y direction, respectively.

By substituting Eqs. (24) ± (28) into Eqs. (21) ± (23), the following semidiscretized
approximations are obtained:

Dh…U† ˆ 0 …30†
dU
dt

ˆ L h…U† ˆ Fh…U† ¡ Hhp …31†

dy
dt

ˆ Mh…y† …32†

4. Temporal discret izat ion. A Runge± Kutta scheme is used for temporal dis-
cretization. The scheme is of third-order accuracy in time and was used by many
other authors [34, 35]. In this scheme, ordinary differential Eqs. (31) ± (32) are formu-
lated, which can be solved from the following:

U…1† ˆ a1Un ‡ b1{Dt[Fh…Un† ¡ Hhp…1†]} …33†

U…2† ˆ a2Un ‡ b2{U…1† ‡ Dt[Fh…U…1†† ¡ Hhp…2†]} …34†

Un‡1 ˆ a3Un ‡ b3{U…2† ‡ Dt[Fh…U…2†† ¡ Hhpn‡1]} …35†

yn‡1 ˆ yn ‡ {Dt[Mh…yn†]} …36†

where …a1;a2;a3† ˆ …1; 3
4 ; 1

3† and …b1; b2;b3† ˆ …1; 1
4 ; 2

3†. The U…1† , p…1† and U…2†, p…2†,
are their corresponding ® rst and second step values for velocity and pressure,
respectively.

5. Treatment for the pressure. Updating the pressure field requires special
care. Therefore, a brief description of the treatment of pressure is given. At each step
of the Runge± Kutta scheme, the FTSPFM [24] is adopted to solve Eqs. (30) and (31).
To illustrate the present scheme, we consider the first step of the Runge± Kutta
scheme. Assume that, at time tn, the velocity Un and pressure pn are known, while
U…1† and p…1† at the first step of the Runge± Kutta scheme are unknown. Let us intro-
duce a first-step intermediate velocity field U¤…1† :
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U¤…1† ˆ a1Un ‡ b1{Dt[Fh…Un† ¡ Hhpn]} …37†

where U¤…1† satis® es the same boundary condition as that for the physical velocity
® eld Un‡1 at time tn‡1.

Because Eq. (37) is explicit in terms of Un and pn, integration stability requires
that the time increment satis® es the Courant-Friedrich-Lewy (CFL) condition,

max…Dt† µ min
4 Pr

…|u| ‡ |v|†2 ;
Pr[…Dx†2 ‡ …Dy†2]

4

( )
…38†

By subtracting Eq. (33) from Eq. (37), we have

U…1† ¡ U¤…1† ˆ ¡b1 DtHh…p…1† ¡ pn† …39†

Since pressure is a scalar quantity, one can de® ne a ® rst-step potential function f…1†

as

f…1† ˆ ¡b1 Dt…p…1† ¡ pn† …40†

Hence, the velocity di� erence can be rewritten as

U…1† ¡ U¤…1† ˆ Hhf…1† …41†

By taking divergence over Eq. (41), we obtain the Poisson equation for the ® rst-step
potential function,

H 2
h f…1† ˆ Dh…U…1†† ¡ Dh…U¤…1†† …42†

From Eq. (30), the ® rst-step velocity U…1† should satisfy the continuity equation, i.e.,

Dh…U…1†† ˆ 0 …43†

It follows that the Poisson equation for the ® rst-step potential function can be
simpli® ed as

H 2
h f…1† ˆ ¡Dh…U¤…1†† …44†

Since the ® rst-step intermediate velocity ® eld U¤…1† and ® rst-step velocity U…1†

satisfy the same boundary conditions as the physical velocity Un‡1 at time tn‡1, it
follows from Eq. (41) that the ® rst-step potential function f…1† satis® es the Neumann
boundary condition

Hhf…1† ˆ 0 …45†

on all the computational boundaries. Equation (44), together with Eq. (45), con-
stitutes the Neumann± Poisson problem for the ® rst-step potential function f…1†.
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In the present DSC-Runge± Kutta scheme, a successive overrelaxation (SOR)
method is used to solve the Poisson Eq. (44). The ® rst-step potential function f…1† is
located at point …i; j† in the staggered grid system, and the Poisson Eq. (44) is,
approximated at the point …i; j†. Therefore, the SOR expression for Eq. (44) is

f…1†l‡1
i; j ˆ o

d…2†
Dx;s…0† ‡ d…2†

Dy;s…0†
¡Dh…U¤…1†† ¡

X¡1

kˆ¡W

d…2†
D;s…k Dx†f…1†l‡1

i‡k; j

"

¡
XW

kˆ1

d…2†
D;s…k Dx†f…1†l

i‡k; j ¡
X¡1

kˆ¡W

d…2†
D;s…k Dy†f…1†l‡1

i; j‡k ¡
XW

kˆ1

d…2†
D;s…k Dy†f…1†l

i; j‡k

#

‡ …1 ¡ o†f…1†l
i; j …46†

where superscript l refers to the number of inner iterations. Also, o is the over-
relaxation parameter, which can have a value between 1.0 and 2.0, and can be chosen
empirically. The iterative convergence criterion for the computation of Eq. (46) is set to

max |f…1†l‡1
i; j ¡ f…1†l

i; j | µ e …47†

where e > 0 is a given small parameter.
Once the values of f…1† and U¤…1† are calculated, the ® rst-step velocity U…1† can

be evaluated from Eq. (41), i.e.,

U…1† ˆ U¤…1† ‡ Hhf…1† …48†

The values of U…1† located outside the computational domain are required for
computing the derivatives. Note that in Eq. (48), the values of both velocity com-
ponents (u and v) are obtained at point …i; j†. Therefore, it is necessary to transfer
them back into their respective points …i ‡ 1

2 ; j† and …i; j ‡ 1
2†. Meanwhile, in Eqs.

(26) ± (28), the values of velocity component u need to be computed at the point
…i; j ‡ 1

2†. Similarly, the values of velocity component v need to be computed at the
point …i ‡ 1

2 ; j†. We can use the DSC algorithm to obtain these transformations at
the speci® ed grid points, as follows:

ui; j‡1
2

ˆ
XW

kˆ¡W

d…0†
D;s k ¡ 1

2

³ ´
Dy

µ ¶
ui; j‡k ui‡1

2; j
ˆ

XW

kˆ¡W

d…0†
D;s k ¡ 1

2

³ ´
Dx

µ ¶
ui‡k; j

…49†

vi; j‡1
2

ˆ
XW

kˆ¡W

d…0†
D;s k ¡

1
2

³ ´
Dy

µ ¶
vi; j‡k vi‡1

2; j
ˆ

XW

kˆ¡W

d…0†
D;s k ¡

1
2

³ ´
Dx

µ ¶
vi‡k; j

…50†

where d…0†
D;s are the coe� cients of the regularized Shannon’s delta kernel, given by

Eq. (12) .
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The ® rst-step pressure p…1† can be obtained from Eq. (40):

p…1† ˆ pn ¡ f…1†

b1Dt
…51†

The extension treatment for the values of p…1† located outside is similar to f…1† . The
treatment for the second-step and ® nal-step velocity and pressure ® elds is similar to
that of the ® rst-step procedure.

6. Overall solut ion scheme. The overall solution scheme can be summarized
as follows.

Step 1. (i) Using the known velocity (Un), pressure (pn), and temperature (yn),
the ® rst-step intermediate velocity ® elds U¤…1† is computed according to Eq. (37).

(ii) By making use of U¤…1†, the ® rst-step potential function f…1† is evaluated by
employing the SOR, according to Eq. (46) . The convergence of this inner iteration is
controlled by the parameter e.

(iii) By using f…1† and U¤…1†, the ® rst-step velocity U…1† is evaluated from
Eq. (48) .

(iv) By using f…1†, the ® rst-step pressure p…1† is updated according to Eq. (51).
Step 2. Repeat (i) ± (iv) of Step 1 with U…1† and p…1† obtained in Step 1 instead of

Un and pn to compute the second-step intermediate velocity ® elds U¤…2† and the
second-step potential function f…2†. Then, second-step velocity U…2† and pressure p…2†

are obtained.
Step 3. Repeat (i) ± (iv) in Step 1 with U…2† and p…2† obtained in Step 2 instead of

U…1† and p…1† to compute the third-step intermediate velocity ® elds U¤…3† and the
third-step potential function f…3†. Then velocity Un‡1 and the pressure pn‡1 at time
tn‡1 are evaluated.

Step 4. Using the corrected values of velocity (Un‡1) and temperature …yn†, the
value of yn‡1 is evaluated by using Eq. (36).

The procedure mentioned above (Step 1± Step 4) is repeated (outer iterations)
until an overall convergence to a steady state is achieved.

C. Finite-Element Approach

The popular projection method of Chorin [26] was extended to ® nite-element
laminar ¯ ow problems by Donea et al. [29]. A modi® ed version of the velocity-
correction method was proposed by Ren and Utnes [30]. In the FEM, the equations
are multiplied by a weight function before they are integrated over the entire
computational domain. This is a distinguishing feature compared to either ® nite-
di� erence or ® nite-volume schemes. In the present study, we employ a ® nite-element-
based Galerkin weighted residual formulation to implement the velocity correction
algorithm [30]. Here, both spatial and temporal discretizations are rendered second-
order-accurate. The details of the ® nite-element shape functions are available in
Segarlind [31]. After obtaining velocity, pressure, and temperature over the domain,
requisite parameters of design interest are obtained. Detailed formulation is avail-
able in Ren and Utnes [30] and Patnaik et al. [38].

It is essential to con® rm that the numerical simulation constitutes a desirable
representation of the governing PDEs. In the present ® nite-element scheme, stability
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of the algorithm is governed by the advection-di� usion term in the velocity-pre-
diction phase. Thus, the time step (Dt) is obtained from

C <
Pec

…2 ‡ Pec†
…52†

where C is the Courant number, C ˆ u Dt=Dx, and Pec is the cell Peclet number,
Pec ˆ u Dx=n. Here, Dt and Dx refer to the minimum allowable time step and
smallest spatial interval, respectively.

III. RESULTS AND DISCUSSION

Most of the publications which report successful numerical simulations in
CFD, in general, present a wide variety of benchmark problems such as ¯ ow over a
backward-facing step, lid-driven cavity, buoyancy-driven cavity, ¯ ow past a circular
or square cylinder, ¯ ow over a bundle of tubes, etc. Choosing problems with com-
plex ¯ uid ¯ ow geometries and boundary conditions, although it strengthens the
claims of robustness of the schemes, reduces the clarity of focus. Against this
background, we concentrate only on the problem of a buoyancy-driven cavity and
present a focused study. We also bring out some of the wide variations observed in
the available literature. Benchmark-quality results are presented by employing the
quasi-wavelet-based DSC approach described earlier. Extensive use of FEM simu-
lations further support the present investigations.

A. Convergence Study

The purpose of this subsection is to verify the convergence and establish re-
liability for the present DSC and FEM solutions. An assessment of the consistency
and grid-independent nature of the numerical simulation procedure is, of course, of
fundamental importance. Error in a numerical simulation is de® ned as the di� erence
between exact and approximate solutions. The real size of the error can never be
computed, due to the nonavailability of an analytical solution for the present pro-
blem. However, it is possible to construct an estimate of the error. Such an estimate
provides a reliable picture not only of the size of the error, but also of the rate of
convergence for the numerical simulations. A variety of error norms are available
for this purpose. In the present study, reduction in incremental error between two
successive iterations was taken as the criterion for convergence. Such an error is
de® ned as

E n
in ˆ max |Zn‡1 ¡ Zn| …53†

where Z refers to the primitive variable of interest, such as velocity, pressure, or
temperature. The variation of E n

in against time can be regarded as convergence his-
tory, and such a plot is given in Figure 2, for both DSC and FEM simulations at
Ra ˆ 105. The pro® le of the convergence history by DSC is ¯ at after t ˆ 0:5, as the
simulations are restrained by the inner iterative process for the potential function in
Eq. (47). Such a constraint does not exist for FEM calculations. However, it should
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be pointed out that in DSC simulations, much higher accuracy is possible by setting
a smaller value for e and a larger DSC parameter for W . It can be further noticed
that the residues of temperature converge faster than the velocity in both DSC and
FEM calculations. To ensure a steady-state solution, the following inequality,
E n

in µ 10¡8, is satis® ed in all simulations.
For ¯ uid dynamical simulations, the temporal convergence alone is not enough

to ensure the correctness of the solution. The algebraic equations being solved may
not be consistent with the physical model. These errors could be due to truncation,

Figure 2. Temporal variation of convergence history for u;v, and y: (a) FEM; (b) DSC.

214 D. C. WAN ET AL.



round-o� , approximations , interpolation, model constants, etc. Hence, one has to
ensure that errors produced in the process of approximation are not magni® ed
during the course of the numerical simulation. There are two systematic ways of
error reduction, viz., grid adaptation and mesh re® nement. Although the former
procedure is dynamic, it also requires a complex and reliable algorithm and could be
computationally expensive. The second approach is to choose a series of mesh sys-
tems to arrive at a reliable mesh. Choosing a judicious mesh system for the present
problem of a buoyancy-driven cavity is obvious, as most of the high-gradient regions
are located close to the walls. A series of grid systems (21 £ 21, 41 £ 41, 81 £ 81,
161 £ 161) have been employed to arrive at a grid-independent solution for
Ra ˆ 105. The data are summarized in Table 1 for velocity and temperature. As can
be observed, due to the high accuracy of the DSC approach, even a grid size of
21 £ 21 can produce a reasonable result which compares well with those of other
re® ned grids. Obviously, a grid size of 81 £ 81 is adequate for simulation by the
DSC, to ensure consistence and reliability in the present investigations.

B. Velocity Dist ribut ion

Initially, the ¯ uid inside the cavity is maintained at the same temperature as
that of the cold wall. The ¯ uid picks up heat from the hot wall and loses it to the cold
wall. There is no transfer of heat through the horizontal walls (either inside or
outside). A wide variety of ¯ uid ¯ ow and heat transfer features evolve as a function
of the Rayleigh number and their precise simulation is indeed a real challenge to any
numerical scheme. To start with, comparison of vertical velocity distribution at the
mid-height …y ˆ 0:5† as a function of the abscissa is presented in Figure 3a, over the
Ra range of 103 to 106, where a grid size of 101 £ 101 was employed. In addition to
the numerical simulation by the present DSC and FEM, results from Massarotti et al.
[5] are also plotted. Although there is excellent agreement between the present FEM
and DSC results, there is a lack of comparison with the predictions of the CBS
scheme [5]. The latter has had widely reported success with a variety of problems in

Table 1. Grid sensitivity studies: convergence for vertical velocity (v) and temperature (y) along the mid-height

(y ˆ 0.5)

x-Coordinate

21 £ 21 41 £ 41 81 £ 81 161 £ 161

v y v y v y v y

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000
0.10000 67.66134 0.61325 64.88415 0.60201 63.74017 0.59636 63.25311 0.59351
0.20000 18.84612 0.47001 17.11070 0.47021 16.49249 0.47007 16.22780 0.46987
0.30000 70.25020 0.48141 70.52181 0.48306 70.61296 0.48355 70.64985 0.48355
0.40000 71.87755 0.49680 71.84403 0.49768 71.83100 0.49787 71.82631 0.49772
0.50000 70.00526 0.49974 70.00005 0.49995 70.00080 0.49992 70.00378 0.49968
0.60000 1.86782 0.50273 1.84395 0.50223 1.82940 0.50197 1.81886 0.50165
0.70000 0.23980 0.51827 0.52105 0.51686 0.61041 0.51629 0.63937 0.51583
0.80000 718.86443 0.52992 717.11324 0.52975 716.49663 0.52977 716.24279 0.52952
0.90000 767.67705 0.38659 764.88387 0.39796 763.73526 0.40351 763.23259 0.40597
1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Figure 3. Comparison of vertical velocity (v) at the mid-height (y ˆ 0.5): (a) 103 µ Ra µ 106; 444
Massarott i et al. [5]; ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢DSC, ööö FEM; (b) 107 µ Ra µ 108; 444 Mayne et al.
[10], ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢DSC, ööö FEM.
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¯ uid dynamics [27, 36, 37]. In fact, the vertical velocity distribution has a direct
relation to the size of the boundary layer formed on the hot and cold walls.
Therefore, it needs to be resolved as accurately as possible. Nevertheless, it should be
pointed out that all three completely di� erent numerical simulations yield similar
peak values.

The velocity distribution for 107 µ Ra µ 108 is plotted in Figure 3b. The dis-
cretization uses a 301 £ 301 grid for this Ra range to ensure the correctness of the
DSC results, although a relatively smaller mesh size also works well. Recent results
of Mayne et al. [10] are also compared for Ra ˆ 107 and 108. There is a good con-
gruence among all the three independent numerical approaches. As the velocity
distribution indicates, the boundary layer is more closely con® ned to the vertical
walls with increase in the Rayleigh number. There is a reasonable correspondence
between the present DSC and FEM results, even for high Rayleigh numbers. The
maximum vertical velocity at the mid-height …y ˆ 0:5† and its corresponding x
coordinate are presented in Table 2. Such a tabular comparison appears to be
popular with other investigators as well. Table 2 also summarizes the maximum
values obtained by de Vahl Davis [3], Ramaswamy et al. [8], Massarotti et al. [5],
Manzari [6], and the more recent investigations of Mayne et al. [10] with good
correspondence among the various schemes. For example, there is a maximum dif-
ference of about 6% for Ra ˆ 106 between the results of de Vahl Davis [3] and
Ramaswamy et al. [8], and all other values fall in between these two investigations.
However, such good comparison is not completely encouraging, as Figure 3a has
indicated that completely noncoincidental velocity distributions can still have the
same maximum value. Therefore, we advocate comparison of the entire velocity
distribution, both horizontal and vertical velocities at the mid-width and the
mid-height, respectively. Variation of horizontal velocity at the mid-width against
the ordinate is presented in Figure 4. This plot indicates the direction and intensity of

Table 2. Comparison of maximum vertical velocity (v) at the mid-height ( y ˆ 0.5)

Ra Ref. [3] Ref. [8] Ref. [5] Ref. [6] Ref. [10]
Present study

FEM
Present study

DSC

103 3.679
(0.179)

^ 3.692 3.73
(0.1827)

3.6962
(0.1790)

3.686
(0.188)

3.686
(0.183)

104 19.51
(0.12)

19.62 19.63 19.9
(0.1246)

19.6177
(0.1195)

19.79
(0.12)

19.98
(0.117)

105 68.22
(0.066)

68.62 68.85 70.0
(0.068)

68.6920
(0.0665)

70.63
(0.072)

70.81
(0.070)

106 216.75
(0.0387)

232.97 221.6 228
(0.039)

220.8331
(0.0380)

227.11
(0.040)

227.24
(0.040)

107 ^ 717.04 702.3 698
(0.0235)

703.2536
(0.0215)

714.48
(0.022)

714.47
(0.021)

2£107 ^ ^ ^ ^ ^ 995.33
(0.0156)

1017.84
(0.02)

4£107 ^ ^ 1417 ^ ^ 1435.5
(0.0156)

1419.84
(0.0133)

108 ^ ^ ^ ^ 2223.4424
(0.013)

2259.08
(0.012)

2290.13
(0.013)
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Figure 4. Variation of horizontal velocity (u) at the mid-width (x ˆ 0.5): (a) 103 µ Ra µ 106 ;
(b) 107 µ Ra µ 108 ; . ¢ ¢ ¢ DSC, ööö FEM.
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¯ uid motion to be between the left and right zones of the square cavity. Both the
DSC and FEM have shown a very good comparison even at Ra ˆ 108. Table 3
summarizes maximum horizontal velocities among the values at the mid-width
…x ˆ 0:5†. Also illustrated are the values given in [3], [6], and [10]. A good com-
parison can be seen among the investigations, particularly between the present DSC
and FEM results. However, when maximum values are compared, it is more rea-
sonable to scan the entire domain of the cavity, and not just along the mid-width or
mid-height. Therefore, for the purpose of benchmarking, maximum horizontal and
vertical velocities and their corresponding coordinate positions are summarized in
Table 4. This table should be useful for future comparisons with new computational
schemes. It should be particularly noted that the maximum horizontal velocity for
Ra ¶ 105 does not occur along or close to the mid-height, but rather is noticed at a
point close to the top left corner of the domain. This aspect further strengthens the
need to scan the entire domain of the cavity when obtaining maximum values. As
Table 4 shows, there is good correspondence between the DSC and FEM ® ndings.
However, there are minor variations in the exact location of the values of this
maxima in the domain.

Table 3. Comparison of maximum horizontal velocity (u) at the mid-width (x ˆ 0.5)

Ra Ref. [3] Ref. [6] Ref. [10]
Present study

FEM
Present study

DSC

103 3.634 (0.813) 3.68 (0.817) 3.6493 (0.8125) 3.489 (0.813) 3.6434 (0.8167)
104 16.2 (0.823) 16.1 (0.817) 16.1798 (0.8235) 16.122 (0.815) 15.967 (0.8167)
105 34.81 (0.855) 34.0 (0.857) 34.7741 (0.8535) 33.39 (0.835) 33.51 (0.85)
106 65.33 (0.851) 65.4 (0.875) 64.6912 (0.8460) 65.40 (0.86) 65.55 (0.86)
107 ^ 139.7 (0.919) 145.2666 (0.8845) 143.56 (0.922) 145.06 (0.92)
2£107 ^ ^ ^ 175.28 (0.93) 175.22 (0.93)
4£107 ^ ^ ^ 216.85 (0.93) 216.67 (0.92)
108 ^ ^ 283.689 (0.9455) 296.71 (0.93) 295.67 (0.94)

Table 4. Maximum u and v velocities and their corresponding locations over the entire domain

u-Velocity (x;y position) v-Velocity (x;y position)

Ra FEM DSC FEM DSC

103 3.657 (0512, 0.812) 3.648 (0.516, 0.816) 3.692 (0.188, 0.488) 3.69 (0.183, 0.483)
104 16.14 (0.489, 0.812) 15.968 (0.5, 0.816) 19.91 (0.119, 0.465) 20.1 (0.1167, 0.467)
105 41.88 (0.281, 0.881) 41.82 (0.29, 0.88) 70.81 (0.07, 0.488) 70.83 (0.07, 0.49)
106 114.3 (0.164, 0.927) 114.53 (0.173, 0.93) 228.05 (0.037, 0.441) 227.88 (0.04, 0.47)
107 339.45 (0.108, 0.963) 339.67 (0.1067, 0.96) 720.54 (0.021, 0.439) 720.43 (0.02, 0.44)
2£107 463.58 (0.0796,0.968) 472.95 (0.093, 0.97) 1020.13 (0.0184, 0.438) 1019.08 (0.02, 0.48)
4£107 668.74 (0.075, 0.974) 663.75 (0.08, 0.97) 1446.39 (0.016, 0.438) 1435.36 (0.013, 0.43)
108 1055.47 (0.07, 0.978) 1006.26 (0.0667, 0.98) 2291.05 (0.0132, 0.438) 2293.67 (0.0133, 0.48)

BENCHMARK SOLUTION FOR THE BUOYANCY-DRIVEN CAVITY 219



C. Natural-Convect ion Pat terns

This subsection analyzes the natural-convection patterns set up by the buoy-
ancy force. The extent of this force is indicated by the Rayleigh number, which in
turn dictates both the ¯ uid ¯ ow and heat transfer characteristics in the domain.
Streamlines, isovelocity contours, and isotherms are plotted in Figure 5, to under-
stand and analyze these wide variety of features. The square-cavity problem with
di� erentially heated vertical walls has two distinct ¯ ow patterns: (1) growth of the

Figure 5. Natural-convection patterns simulated by DSC, 103 µ Ra µ 108: (a) streamlines; (b) iso-u con-
tours; (c) iso-v contours; (d) isotherms.
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boundary layer along the wall; (2) a recirculating motion in the core region. The
latter is prominent in the lower-Ra range, while the former dominates the higher-Ra
range. However, both patterns su� ce in the medium-Ra range. These features are
very well depicted in the streamlines of Figure 5. Only a single circulating eddy
persists for Ra ˆ 103 and 104. For Ra ˆ 105, the inner most zone of the main re-
circulation splits into two smaller counterrotating eddies in the core region. These
two small inner eddies are stretched toward the top left and bottom right corners,
retaining the dominance of the main circulation. There exists a saddle point along an
imaginary line joining these two inner eddies. With increase in Rayleigh number
…106†, there is a further transformation in the ¯ uid ¯ ow patterns, with the inner
secondary eddies moving more closer to the hot wall and the cold wall. For still
higher values of Ra, they become weaker in strength and are eventually con® ned to
the topmost left and bottommost right corners of the square cavity.

The isovelocity contours in Figure 5 reveal several prominent features. In the
u-velocity contours there are two horizontal eddies, one below the other, for
Ra ˆ 103. For higher values of Rayleigh number, these two eddies move closer to
the two adiabatic walls. Similarly, two dominant circulations are prominently
visible in the vertical isovelocity contours (one each on the left and right zones of
the cavity) for Ra ˆ 103. These two eddies subsequently move closer to the hot wall
and the cold wall with an increase in the Rayleigh number. This indeed illustrates
that the boundary layer gets thinner as a function of the Rayleigh number. The
changes that occur in the isotherms (constant-temperatur e contours) as a function
of the Rayleigh number seems to be more exciting. For Ra ˆ 103 and below, the
contours are nearly vertical and gradually transform into a horizontal grill-like
pattern with increase in Ra. Nevertheless, the contours are normal to the horizontal
adiabatic walls. This indeed indicates that there is no movement of heat ¯ ow
through this boundary. In the immediate neighborhood of the hot and cold walls,
the contours remain parallel to the isothermal vertical walls. What is particularly
fascinating is the existence of a wide range of ¯ uid ¯ ow and heat transfer char-
acteristics in such a simple geometry, where the patterns are dictated purely by the
force of buoyancy. There is a very good visual comparison for the streamlines,
isovelocities, and isotherms, over a wide range of Rayleigh numbers, as they depict
similar characteristic ¯ uid ¯ ow and heat transfer patterns. In fact, there is complete
unanimity in the available literature and visuals of the present simulation. As will
also be seen later, such good qualitative comparison of gross features is not ade-
quate and should not be misconstrued.

D. Thermal Dist ribut ion

Knowledge of heat transfer coe� cient along the hot and cold walls is invalu-
able to thermal engineers and designers. Nusselt number …Nu† represents the desired
nondimensional parameter of interest, which is the ratio of heat convected from the
wall to the ¯ uid, to that conducted up to the wall. This can be given by the following
relation:

Nulocal ˆ § qy
qx

|wall …54†
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In the expression above, a negative sign essentially implies transfer of heat from the
wall to the ¯ uid (for the hot wall), while a positive sign means from the ¯ uid to the
wall (for the cold wall). Local Nusselt number distribution is compared, in Figure 6,
with the results of [5] and [6]. The pattern of distribution in the low-Ra range di� ers
signi® cantly from that in the high-Ra range. In the low-Ra range, the results have
good congruence among the investigations. However, in the medium- and high-Ra
range, results by the present DSC and those of Manzari [6] show good correspon-
dence. If this good comparison between the two is any indication of the accuracy of
these simulations, the present FEM and CBS results overpredict, particularly for
Ra ˆ 106 and above. Nevertheless, this aspect has to be con® rmed by other
numerical schemes. Even though there exists very good correspondence between the
present DSC and FEM results for both vertical and horizontal velocity distributions
(Figures 3 and 4), the local Nu variation is signi® cantly di� erent. However, there
is a good similarity in the pro® les predicted by DSC and FEM simulations.
For Ra ˆ 107, the predictions by Massarotti [5] show a completely di� erent trend

Figure 6. Comparison of local Nusselt number along the hot wall for 103 µ Ra µ 107: 444 Massarotti
et al. [5], Manzari [6], . ¢ ¢ ¢ DSC, Ð Ð Ð FEM.
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compared to the other three simulations, which is evident from Figure 6. Despite the
apparent simplicity in the geometry, clarity in the boundary conditions, the phe-
nomenal progress made in computational methods, and the fast-growing number-
crunching capability, there is a wide variation among the investigations, even in the
prediction of a simple design parameter, viz., the Nusselt number. This lack of
unanimity poses a hindrance to the reliable simulation of more complex, industrial-
scale ¯ uid ¯ ow and heat transfer problems. Further, it also emphasizes the need to
resolve this aspect by other independent numerical investigations.

Figure 7 elucidates the local Nusselt number distribution along the hot and
cold walls obtained by using the DSC. It is natural to expect an antisymmetric local
Nu distribution between the hot and cold walls, as there exists a steady-state
asymmetric distribution in the ¯ uid ¯ ow and heat transfer patterns. This aspect can
be noticed from the ® gures. There is a greater transfer of heat from the lower bottom
of the hot wall to the ¯ uid. Also, the upper top portion of the cold wall picks up

Figure 7. Local Nusselt number variation by DSC simulations: (a) hot wall, 103 µ Ra µ 106; (b) cold wall,
103 µ Ra µ 106; (c) hot wall, 107 µ Ra µ 108; (d) cold wall, 107 µ Ra µ 108.
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Table 5. Comparison of Nusselt number (Nu) and the corresponding ordinate (max., maximum; min.,

minimum; Av., average)

Ra Nu Ref. [3] Ref. [8] Ref. [5] Ref. [6] Ref. [10]
Present study

FEM
Present study

DSC

103 Max. 1.50
(0.092)

^ ^ 1.47
(0.109)

1.5062
(0.08956)

1.501
(0.08)

1.444
(0.0917)

Min. 0.692
(1.0)

^ ^ 0.623
(1.0)

0.6913
(1.0)

0.691
(1.0)

0.665
(1.0)

Av. 1.12 ^ 1.117 1.074 ^ 1.117 1.073

104 Max. 3.53
(0.143)

3.5 ^ 3.47
(0.125)

3.5305
(0.1426)

3.579
(0.13)

3.441
(0.1333)

Min. 0.586
(1.0)

^ ^ 0.497
(1.0)

0.5850
(1.0)

0.577
(1.0)

0.528
(1.0)

Av. 2.243 ^ 2.243 2.084 ^ 2.254 2.155

105 Max. 7.71
(0.08)

7.71 ^ 7.71
(0.08)

7.7084
(0.08353)

7.945
(0.08)

7.662
(0.085)

Min. 0.729
(1.0)

^ ^ 0.614
(1.0)

0.7282
(1.0)

0.698
(1.0)

0.678
(1.0)

Av. 4.52 ^ 4.521 4.3 ^ 4.598 4.352

106 Max. 17.92
(0.038)

17.0 ^ 17.46
(0.039)

17.5308
(0.03768)

17.86
(0.03)

17.39
(0.04)

Min. 0.989
(1.0)

^ ^ 0.716
(1.0)

0.9845
(1.0)

0.9132
(1.0)

0.903
(1.0)

Av. 8.8 ^ 8.806 8.743 ^ 8.976 8.632

107 Max. ^ 30.0 ^ 30.46
(0.024)

41.0247
(0.03899)

38.6
(0.015)

31.02
(0.02)

Min. ^ ^ ^ 0.787
(1.0)

1.3799
(1.0)

1.298
(1.0)

0.997
(1.0)

Av. ^ ^ 16.40 13.99 ^ 16.656 13.86

2£107 Max. ^ ^ ^ ^ ^ 48.84
(0.015)

39.343
(0.015)

Min ^ ^ ^ ^ ^ 1.437
(1.0)

1.106
(1.0)

Av. ^ ^ ^ ^ ^ 19.97 15.46
4£107 Max. ^ ^ ^ ^ ^ 61.69

(0.015)
49.908
(0.015)

Min. ^ ^ ^ ^ ^ 1.59
(1.0)

1.245
(1.0)

Av. ^ ^ ^ 23.64 ^ 23.96 18.597

108 Max. ^ ^ ^ ^ 91.2095
(0.067)

91.16
(0.010)

68.73
(0.010)

Min. ^ ^ ^ ^ 2.044
(1.0)

1.766
(1.0)

1.428
(1.0)

Av. ^ ^ ^ ^ ^ 31.486 23.67
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more heat from the ¯ uid. This rate of transfer of heat from the wall to the ¯ uid, and
vice versa, increases with the Rayleigh number. Local Nu is maximum at a point
close to the bottom of the hot wall and minimum at the top. On the cold wall, it is
minimum at the bottom and maximum at a point close to the top wall. The locations
of these minima, maxima, and averages are summarized in Table 5 together with
other investigations. The average Nusselt number, which is a design parameter of
interest, is obtained from the following integration:

Nu ˆ
Z 1

0
Nulocal dy …55†

In fact, the uncertainties and complexities grow with increase in the Rayleigh
number. Nevertheless, there is good agreement among the investigations up to
Ra ˆ 106. However, for Ra ˆ 107, the average value by Manzari [6] has good cor-
respondence with the present DSC scheme. A careful examination of Table 5 reveals
that there is a good correspondence in the prediction of average Nusselt number
values among various numerical schemes. However, there are signi® cant dis-
crepancies in the literature in the prediction of local Nu distribution. Therefore,
we advocate exercising caution when comparing average Nusselt number values. The
area integration under two completely di� erent local Nusselt number distributions
can still yield the same average value. This indeed implies that correct values could
be obtained for wrong reasons. The numerical ¯ uid ¯ ow analyst should be parti-
cularly wary of such possible pitfalls.

In the literature, the usual practice is to compare either the average or local
Nusselt number values. However, Nusselt number being the ® rst partial derivative of
temperature, it is more reasonable to present the latter. Further, the accuracy of
the Nusselt number is limited by the approximation of derivatives. To this end, the
temperature variation at the mid-height, against the abscissa, in a region close to
the hot wall, is presented in Figure 8. Recent results of Mayne et al. [10] compare
well with the present DSC and FEM simulations.

IV. CONCLUSIONS

The present study has introduced a high-accuracy quasi-wavelet-based discrete
singular convolution (DSC) for the numerical simulation of coupled convective heat
transfer problems. A standard ® nite-element-based Galerkin weighted residual for-
mulation is also implemented with a view to supplement some of the key aspects of
the present investigation. Both approaches solve the Navier-Stokes and energy
equations by fractional step-based methods. A focused study on the problem of a
buoyancy-driven cavity is presented. Benchmark-quality data are generated by using
the DSC scheme. A very high level of accuracy, which could be achieved for the
Taylor problem [18], is a great asset to surmize its reliability for the driven-cavity
problem. A comparative study of the results obtained from a number of other
computational schemes is also presented. Some discrepancies have been observed in
the literature, and predictions by both the FEM and DSC are presented. Numerical
issues such as consistency, convergence, and stability have been addressed. Some
speci® c conclusions are as follows.

BENCHMARK SOLUTION FOR THE BUOYANCY-DRIVEN CAVITY 225



° Numerical simulation of a buoyancy-driven cavity is extended to the entire la-
minar natural-convection range 103 µ Ra µ 108, while the earlier benchmark data
of de Vahl Davis [3] was con® ned to the range 103 µ Ra µ 106.

° All the numerical schemes have produced qualitatively similar natural-convection
patterns in terms of streamlines, isovelocities, and isotherms. However, a quan-
titative comparison of the distribution in terms of primary variables is more
crucial.

° Predictions by both the DSC and FEM have shown that good comparison of
velocities does not necessarily mean good comparison of the local Nusselt number
distribution.

° Numerical schemes should compare the entire velocity and=or local Nusselt
number distribution, instead of comparing only the maximum and=or average
values, as the latter could lead to erroneous conclusions.

° The lack of good comparison observed in the available literature needs to be
resolved further, by other independent numerical schemes.

Figure 8. Variation of temperature at the mid-height (y ˆ 0.5): 444 Mayne et al. [10] , ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ DSC,
ööö FEM.
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