
3Numerial Methods for Partile TrakingCristian Marhioli
3.1 IntrodutionWhen dealing with traking of partiles with onstant mass, we are interestedin solving for the following equation:�vp(t)�t = F[vp(t)℄mi ; vp(t0) = vp;0 : (3.1)In general terms, this equation an be regarded as a �rst order ODE sub-jet to an initial ondition:��t [�(t)℄ = f [�(t)℄ ; �(t0) = �0 ; (3.2)where �(t) is a matrix or array representing a set of variables (e:g: thepartile veloity omponents). Thus, partile traking is an initial value (orCauhy) problem: �rst, the solution �1 of the ODE at time t1 = t0 +�t hasto be found. �1 then beomes the new initial ondition for omputing �2 attime t2 = t1 +�t and so on.To this objet, ODEs are solved numerially by onverting derivativesinto disrete algebrai expressions. This disretization proedure leads to analgebrai equation, whih is manipulated to generate an algorithm for the ap-proximate solution of the ODE. The algorithm gives the approximate solutionat the (n+1)� th time step in terms of the known solution at the n� th andearlier time steps.In this hapter, we review the most ommon time-marhing numerialmethods for ODEs.3.2 Expliit and Impliit MethodsEquation 3.2 an be solved analitially by integration:



16 3 Numerial Methods for Partile TrakingZ �n+1�n d� = Z tn+1tn f(t; �(t)) dt : (3.3)However, approximation is required to evaluate the integral on the r.h.s.The expliit method (or Euler forward) replaes the integral with the initialvalue of the integrand operator f :�n+1 � �n�t = f(tn; �n) : (3.4)The impliit method (or Euler bakward) replaes the integral with the�nal value of the integrand operator f :�n+1 � �n�t = f(tn+1; �n+1) : (3.5)Another ommon method is the midpoint rule (or modi�ed Euler), whihuses the midpoint of the integration time interval:�n+1 � �n�t = f(tn+1=2; �n+1=2): (3.6)The shemati in �gure 3.1 shows the di�erent proedures used by Eulershemes to approximate the integral on the r.h.s of equation 3.3, in omparisonwith the ase of linear interpolation.Note that Euler methods are �rst-order: the order of auray of thesheme by whih the integration of the equation of partile motion is a-omplished and the temporal resolution determine the magnitude of the errorinurred at eah time step. This error is aumulated over time and the u-mulative time-stepping error depends also on the duration of traking. In thease of Euler methods, the solution at the new time-step is omputed withan error proportional to �t2, where �t is the time step size. If N time stepsare required to ompute the solution at some �nite �nal time t = t0+N ��t,then the �nal error is proportional to �t.
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3.3 Preditor-Corretor Methods 17All methods thus produe aurate solutions when the time step size issmall. However, many problems in uid mehanis an only be solved bysystems of di�erential equations that involve a wide range of di�erent timesales. Suh problems are said to be sti� in a ertain interval of integration ifthe numerial solution in that interval has its step size limited more severely bythe stability of the numerial tehnique than by the auray of the tehnique.The issue of stability is briey addressed in Appendix A of this book.The reader is referred to the books by Flether and by Ferziger and Peri forfurther details.Here, it is important to underline that order of a sheme and stability aretwo di�erent onepts. For example, the impliit shemes desribed above areunonditionally stable i.e. they yield bounded solutions for every time step if�f(t; �)=�� < 0 but their auray an be very limited.Likewise, order of a sheme and auray of a sheme (i.e. the trunationerror assoiated with approximating derivatives) are not the same thing. Theorder of a sheme is generally (tough not always) a reliable guide to the au-ray of that sheme. However, eah sheme has its pathologial appliationswhih an ause it to break down. The order should be simply regarded as aquantitative measure of the rate at whih the error dereases as the time stepsize dereases. In addition, this is true only when the time step size beomessmaller than a given threshold value, whih depends on both the problem tobe solved and the sheme used and an not be determined in advane. For timestep size larger than the threshold value, the error yielded by two di�erentshemes of the same order may di�er by as muh as an order of magnitude.There is of ourse another requirement for aurate stable integration ofthe equations of motion. No partile an be allowed to move more than onegrid ell in distane during eah time step. In other words, the size of thetraking time step must be suh that the typial displaement of a partile inany diretion is smaller than the grid spaing in the same diretion.3.3 Preditor-Corretor MethodsExpliit Euler methods are generally more easy to program than impliit Eulermethods. They also require less omputer memory and CPU time per integra-tion step, but they are more unstable. The idea behind Preditor-CorretorMethods (PCMs) is to ombine the properties of expliit and impliit Eu-ler methods to obtain a method with improved onvergene harateristis.The most ommon PCM predits the solution at the new time step using theexpliit Euler method: ��n+1 = �n + f(tn; �n)�t : (3.7)The predited solution ��n+1 is then orreted using the impliit trape-zoidal rule (i.e. linear interpolation between the initial and the �nal points):



18 3 Numerial Methods for Partile Traking�n+1 = �n + �t2 �f(tn; �n) + f(tn+1; ��n+1� : (3.8)It an be shown that the highest order of auray of suh PCM is seond-order. For higher orders, a suitable ombination of Adams methods an beused (see Setion 3.6).3.4 Crank-Niolson MethodsCrank-Niolson Methods (CNMs) are impliit methods whih apply the seond-order trapezoidal rule to PDEs and ODEs:�n+1 = �n + �t2 [f(tn; �n) + f(tn+1; �n+1℄ : (3.9)CNMs are ommonly used when time auray is important. CNMs, Eu-ler methods and PCMs are alled two-level methods, sine they involve thevalue of the unknown integral operator at only two time steps. The highestorder of auray of two-level methods is seond order. Higher-order approx-imations an be obtained by using methods whih exploit the information atadditional points. In the following, we disuss multi-step methods, whih usepreviously generated solutions and Runge-Kutta methods, whih use data attimes between tn and tn+1.3.5 Runge-Kutta MethodsAs mentioned, multi-step methods ahieve high order auray by eÆientlyusing previously generated solutions. Runge-Kutta Methods (RKMs) ahievethe same goal in a single step, but at the expense of many evaluations of thederivative per step. Being single-step shemes, RKM are self-starting and thusoverome the diÆulties of starting multipoint methods using the spei�edinitial ondition. Also, they are more aurate and more stable than multipointmethods of the same order: thus, RKM work well with non-stationary proesslike partile dispersion studied in a Lagrangian framework.The general n-step RK sheme applied to equation 3.3 an be written as:�n+1 = �n +�t RXr=1 rfr ; (3.10)where:fr = f(tn + ar�t; �n +�t RXs=1 brsfs) ; ar = RXs=1 brs : (3.11)



3.5 Runge-Kutta Methods 19Note that brs are elements of a lower triangular matrix.RKMs are lassi�ed as expliit, impliit and semi-impliit. Here, only the�rst two will be onsidered. Impliit shemes guarantee high auray andgood stability but they are omputationally expensive for non-linear initialvalue problems sine they require the iterative solution of a set of non linearalgebrai equations for f at eah time step. This is muh more expensiveompared to the expliit shemes, whih are easy to program and use lessomputer memory and omputation time per step. Expliit methods, however,su�er from numerial instability when the time step is relatively large. Thehoie is a trade-o� between stability and omputational ost, if the shemeshave the same order of auray. In general, impliit shemes are suitable forsti� di�erential equations whereas expliit RK shemes are more ommonlyused when the time step is small.3.5.1 Seond-order Runge-KuttaThe seond-order RKM onsists of two steps: the �rst step uses a �rst-orderexpliit Euler method to ompute ��n+1=2 at half time step, the seond stepuses the midpoint rule for the full time step to ompute �n+1 at step tn+1 =tn +�t: ��n+1=2 = �n + �t2 f(tn; �n) ; (3.12)�n+1 = �n +�tf(tn+1=2; ��n+1=2) : (3.13)3.5.2 Third-order Runge-KuttaThe third-order RKM is derived using a higher order numerial integrationsheme and onsists of three steps. The �rst step uses a �rst-order expliitEuler method to ompute ��n+1=2; the seond step uses the midpoint rule forthe full time step to ompute ��n+1. The �nal step uses the Simpson's rule toorret ��n+1 and ompute �n+1.��n+1=2 = �n + �t2 f(tn; �n) ; (3.14)��n+1 = �n +�tf(tn+1=2; ��n+1=2) ; (3.15)�n+1 = �n + �t6 �f(tn; �n) + 4f(tn+1; ��n+1)+ (3.16)f(tn+1; ���n+1)� : (3.17)where ���n+1 = �n+2(��n+1���n+1=2). A seond version is obtained by splittingthe integration time step in three parts, as shown in �gure 3.2:
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tt tn n + 1t n + 1/3 t n + 2/3Fig. 3.2. Time step splitting: a) 2nd-order RKM, b) 3rd-order RKM.��n+1=3 = �n + �t3 f(tn; �n) ; (3.18)��n+2=3 = �n + 2�t3 f(tn+1=3; ��n+1=3) ; (3.19)�n+1 = �n + �t4 hf(tn; �n) + 3f(tn+2=3; ��n+2=3)i : (3.20)3.5.3 Fourth-order Runge-KuttaThe fourth-order RKM is the most popular among higher-order RKMs andonsists of four steps. The �rst two steps use a �rst-order expliit Euler predi-tor and a �rst-order impliit Euler orretor to ompute ��n+1=2 and ���n+1=2at half time step. The third step uses the midpoint rule for the full time stepto predit ��n+1 whih is orreted in the �nal step by means of the Simpson's1=3 rule. ��n+1=2 = �n + �t2 f(tn; �n) ; (3.21)���n+1=2 = �n + �t2 f(tn+1=2; �n+1=2) ; (3.22)��n+1 = �n +�tf(tn+1=2; ���n+1=2) ; (3.23)�n+1 = �n + �t6 [f(tn; �n) + 2f(tn+1=2; ��n+1=2) +2f(tn+1=2; ���n+1=2) + f(tn+1; ��n+1)� : (3.24)A seond (less popular) version is based on the Simpson's 3=8 rule andreads:



3.6 Adams Methods 21��n+1=3 = �n + �t3 f(tn; �n) ; (3.25)��n+2=3 = �n + 2�t3 f(tn+1=3; ��n+1=3) ; (3.26)���n+2=3 = ��n+2=3 + �t3 hf(tn+1=3; ��n+1=3)� f(tn; �n)i ; (3.27)��n+1 = �n +�t hf(tn; �n)� f(tn+1=3; ��n+1=3)+f(tn+2=3; ���n+2=3)i ; (3.28)�n+1 = �n + �t8 [f(tn; �n) + 3f(tn+1=3; ��n+1=3) +3f(tn+2=3; ���n+2=3) + f(tn+1; ��n+1)� : (3.29)3.6 Adams MethodsAdams methods are multipoint methods derived by �tting a polynomial to thederivatives at a number of points in time. Expliit Adams methods use data attime tn in the interpolation polynomial and are known as Adams-BashforthMethods (ABMs). Impliit Adams methods use data at time tn+1 and areknown as Adams-Moulton Methods (AMMs). The �rst-order expliit/impliitAdams Method is expliit/impliit Euler.Seond-order Adams-Bashforth Method:�n+1 = �n + �t2 [3f(tn; �n)� f(tn�1; �n�1)℄ : (3.30)Seond-order Adams-Moulton Method:�n+1 = �n + �t2 [f(tn; �n) + f(tn+1; �n+1)℄ : (3.31)The seond-order AMM is the same as the seond-order CNM: thus, it doesnot use previously omputed solution values. The third order formula is moretypial beause it does involve a previously omputed value. For ompleteness,third-order and fourth-order ABM and AMM are reported (for sake of brevity,we put f(t; �) = f).Third-order and forth-order ABM:(3rd-order) �n+1 = �n + �t12 (23fn � 16fn�1 + 5fn�2) ; (3.32)(4th-order) �n+1 = �n + �t24 (55fn � 59fn�1 + 37fn�2 � 9fn�3) : (3.33)Third-order and forth-order AMM:



22 3 Numerial Methods for Partile Traking(3rd-order) �n+1 = �n + �t12 (5fn+1 + 8fn � fn�1) ; (3.34)(4th-order) �n+1 = �n + �t24 (9fn+1 + 19fn � 5fn�1 + fn�2) : (3.35)Adams methods of order higher than four exist but they are not often usedfor the solution of ODEs. Interestingly, Adams methods an be ombined toobtain PCMs of order higher than seond: a ommon proedure is to usea 3rd/4th order ABM as a preditor and a AMM of the same order as aorretor.The Adams-Moulton formula is more aurate than the Adams-Bashforthformula of the same order, so that it an use a larger step size; the Adams-Moulton formula is also more stable. A modern ode based on Adams methodsis relatively easy to program and requires only one evaluation of the derivativeper time step. However, it may produe non-physial solutions due to the useof data from several time steps. Another drawbak is that an Adams odeis more omplex than a Runge-Kutta ode beause it must ope with thediÆulties of starting the integration and adapting the time step size. Withenough \memorized" values, however, we an use whatever order formula wewish in the step from t0. Modern Adams odes attempt to selet the mosteÆient formula at eah step as well as to hoose an optimal step size toahieve a user-spei�ed auray.Some general rules-of-thumb about how to hoose between Runge-Kuttamethods and Adams methods are given below:1. If output at many points is needed, Adams methods are generally pre-ferred.2. If funtion evaluations are expensive, Adams methods are preferred.3. If funtion evaluations are inexpensive and moderate auray is required,Runge-Kutta methods are generally best.4. If storage is at a premium, Runge-Kutta methods are preferred.5. If auray over a wide range of toleranes is needed, the variable orderAdams methods will outperform the �xed order Runge-Kutta methods.3.7 Integration Time Step Size ConsiderationsThe hoie of the time step size is ruial in partile traking: it must behosen orretly to perform the numerial experiments and to ompute theLagrangian statistis eÆiently and aurately.A theorem, developed by H. Nyquist, states that a signal may be uniquelyreonstruted, without error, from samples taken at equal time intervals.The sampling rate (the number of samples taken per unit time, i.e. therate at whih the signal is sampled for subsequent use) must be equal to,or greater than, twie the highest frequeny omponent in the signal. If weapply Nyquist's theorem to partile traking, the traking time step, �tTr, is



3.7 Integration Time Step Size Considerations 23the \highest frequeny omponent" and the partile response time �p is the\sampling rate" so that it must be:�tTr � �p2 ; (3.36)in order to obtain an aurate estimate of the partile trajetory, whih isthe \signal" to be reonstruted.The magnitude of the time step�tTr is bounded not only by the resolutionrequired to ompute aurate partile trajetories but also by the availableomputer disk spae. A smaller �tTr requires higher storage frequeny andlarger disk spae. On the other hand, aurate partile trajetories need �tTrto be smaller than partile harateristi time �p. As a onsequene, the three-dimensional uid veloity �eld needs to be stored at intervals equal to �tTr ,whih is larger than the time step,�tNS , used in integrating the Navier-Stokesequations for the uid. A ommon proedure is to hoose �tTr = �tNS (vanHarleem et al. 1998).In their DNS of partile dispersion in a deaying isotropi turbulene,Elghobashi & Truesdell (1992) used �tTr = (1=2 � 1=3) �p on a 963 pointsgrid: the disk spae required to store the three uid veloity omponents was10Mb per time step. Roughly 1 Gb of disk spae was required for the ompletetrajetory of eah of the 223 traked partiles. A further redution of the timestep size (�tTr = 1=4 �p) resulted in a negligible di�erene in the dispersionstatistis.Further omments an be done onsidering the dependeny of the timestep size on the harater of the turbulene, most likely the integral time sale,the partile's inertia and the partile's settling veloity. Intuitively, we knowthat, as the Stokes number inreases, partiles tend not to respond to theaeleration of the surrounding uid and follow a trajetory quite di�erentthan that of the uid partiles. Also, partiles with small settling veloityshow no preferred diretion whereas partiles with large settling veloity tendto drift in the diretion of the external body fore ating on them. In bothsituations, it is not straightforward to guess whih ase requires the smallesttime step to keep the overall error low (Wang & Stok, 1992).Results reported in the literature show that:� the error in the partile loation relative to an exat trajetory growsexponentially with time, no matter how small the time step (Wang &Stok, 1992). The smaller the time step size, the longer it takes for theerror to beome signi�ant.� if the long-time partile di�usivity is to be alulated, the error in thepartile loation should be low after several Lagrangian integration times.To this aim, a smaller time step is required with inreasing partile Stokesnumber, St, and settling veloity, vs. The derease in the time step sizewith inreasing St (i.e. inreasing partile mass) is mostly due to theinrease in the Lagrangian integration time. The derease in the time step



24 3 Numerial Methods for Partile Trakingsize with inreasing vs is due to the inrease in the distane traveled bythe partile.� if the behavior of partile trajetories at a given time after release is ofinterest, then the time step size limit should be determined for a �xed totalLagrangian integration time. To this aim, larger time steps an be usedfor partiles with larger inertia (i.e. larger St), beause the trajetoriesare less random.The time required to aomplish a simulation for heavy partile dispersiondepends on the total Lagrangian integration time, the time step size, thenumber of partile trajetories omputed 1. In the dispersion simulation byWang & Stok (1992), 2000 partile trajetories were alulated using 80Fourier modes: the omputation time on a IBM 3090 omputer ranged from2500 to 8000 seonds.3.8 Appliation to the Generi Partile Equation ofMotionWe next onsider the appliation of some of the numerial shemes desribedin the previous paragraphs to the equation of motion for a spherial partilesubjet to drag fore only, in the hypotesis of Stokes regime:dvpdt = u� vp�p (3.37)We disretize equation 3.37 and write down the expressions for its solutionvp;n+1 at the new time step tn+1.1. Euler expliit: vp;n+1 = vp;n + �t�p (un � vp;n)2. Euler impliit:vp;n+1 = vp;n + �t�p (un+1 � vp;n+1)! vp;n+1 = vp;n + �t�p un+11 + �t�p3. Preditor-orretor: v�p;n+1 = vp;n + �t�p (un � vp;n)vp;n+1 = vp;n + �t2�p �(un � vp;n) + (un+1 � v�p;n+1)�1 and the number of Fourier modes to simulate the uid, if a pseudo-spetral DNSode is used.



3.8 Appliation to the Generi Partile Equation of Motion 254. 2nd-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)vp;n+1 = vp;n + �t�p �un+1=2 � v�p;n+1=2�5. 3rd-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)v�p;n+1 = vp;n + �t�p �un+1=2 � v�p;n+1=2�vp;n+1 = vp;n+�t6�p h(un � vp;n) + 4(un+1=2 � v�p;n+1=2) + (un+1 � v�p;n+1)i6. 4th-order RK: v�p;n+1=2 = vp;n + �t2�p (un � vp;n)v��p;n+1=2 = vp;n + �t2�p �un+1=2 � v�p;n+1=2�v�p;n+1 = vp;n + �t�p �un+1=2 � v��p;n+1=2�vp;n+1 = vp;n + �t6�p h(un � vp;n) + 2(un+1=2 � v�p;n+1=2)++ 2(un+1=2 � v��p;n+1=2) + (un+1 � v�p;n+1)i7. 2nd-order AM (and 2nd-order CN):vp;n+1 = vp;n + �t2�p [(un � vp;n) + (un+1 � vp;n+1)℄! vp;n+1 = vp;n + �t2�p (un+1 + un � vp;n)1 + �t2�p8. 2nd-order AB:vp;n+1 = vp;n + �t2�p [3(un � vp;n)� (un�1 � vp;n�1)℄



26 3 Numerial Methods for Partile Traking9. 3rd-order AM:vp;n+1 = vp;n + �t12�p [5(un+1 � vp;n+1) + 8(un � vp;n)� (un�1 � vp;n�1)℄! vp;n+1 = vp;n + �t12�p [5un+1 + 8(un � vp;n)� (un�1 � vp;n�1)℄1 + 5�t12�p10. 3rd-order AB:vp;n+1 = vp;n+ �t12�p [23(un � vp;n)� 16(un�1 � vp;n�1) + 5(un�2 � vp;n�2)℄11. 4th-order AM:vp;n+1 = vp;n + �t24�p [9(un+1 � vp;n+1) + 19(un � vp;n)�5(un�1 � vp;n�1) + (un�2 � vp;n�2)℄12. 4th-order AB:vp;n+1 = vp;n + �t24�p [55(un � vp;n)� 59(un�1 � vp;n�1)+37(un�2 � vp;n�2)� 9(un�3 � vp;n�3)℄Note that the uid veloities interpolated at partile position at timetn+1=2 and/or tn+1, namely un+1=2 and un+1, may be required to alulatevp;n+1. These veloities are unknown a priori and have to be estimated: thus,some approximation is neessary. The easiest (and less aurate) hoie is tofreeze the uid veloity �eld during the time interval between tn and tn+1,so that un = un+1=2 = un+1. This approximation is justi�ed as follows: thetime step size �tNS used in the solution of the Navier-Stokes equation forthe uid is limited by the Courant numerial stability onstraint and is typi-ally muh smaller than the time step size �tTr used in the integration of thepartile equation of motion (Kontomaris, Hanratty & MLaughlin 1992). Infat, �tNS is muh smaller than the Kolmogorov uid time-sale utuationsbased on the volume-averaged visous dissipation. Another option is to inter-polate un+1=2 at partile position at time tn+1=2 and un+1 at partile positionat time tn+1. To this aim, the partile veloity v�p;n+1=2 and v�p;n+1 preditedby the numerial method an be used.In order to demonstrate the performane of the di�erent numerial shemes,in �gure 3.3, we ompare the behavior of the solution of equation 3.37 whenEuler methods, PCMs amd Adams methods are used.
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Fig. 3.3. Behavior of the solution by expliit/impliit Euler methods and by seond-order PCM (a) and by seond-order ABM/AMM (b) using two di�erent time stepsizes: �t = St=2 and �t = St=3.From �gure 3.3a, it is apparent that seond-order PCMs produe a moreaurate solution than �rst-order Euler methods. As expeted, the impliitEuler method tends to slighlty underpredit whereas the expliit Euler methodtends to overpredit the orret value of the solution. Also, the auray ofEuler methods signi�antly inreases as the time step size dereases. From�gure 3.3b, it is apparent that AMMs are more aurate than ABMs of thesame order and that the auray of both methods inreases as the time stepsize dereases.Figure 3.4 shows what happens when a numerial sheme is used with timesteps whih violate the stability ondition. We used a fourth-order expliitABM (�gure 3.4a): when the time step size is equal to half the partile Stokesnumber (�t = St=2), osillations are generated whih grow unboundedly withtime. In a few steps, the numbers beome too large to be handled by theomputer. When the omputation is arried on with a time step size �t =St=3, osillations are still generated but they grow muh slower. Eventually,osillations disappear with a further redution of the time step size (�t = St=4and�t = St=5 pro�les). With an impliit AMM of the same order (�gure 3.4b)no problems ourred even for the largest time step used.Figure 3.5 shows what happens when the time step size is �xed and theorder of the numerial sheme is hanged. When an expliit ABM is used(�gure 3.5a), inreasing the order of the method triggers small amplitudeosillations whih slowly grow with time. This problem does not our withthe impliit AMM ounterpart (�gure 3.5b).Figure 3.6 shows the behavior of the solution when a RKM is used: boththe order of the sheme and the time step size are inreased. No osillation inthe solution ours (reall that RMKs are more stable than Adams methodsof the same order) but the auray signi�antly dereases as the time stepsize inreases from �t = St=3 (�gure 3.6a) to �t = 1:5 St (�gure 3.6d). Ofourse, higher-order RKMs yield more aurate solution for a given time stepsize.
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Fig. 3.4. Behavior of the solution by fourth-order ABM (a) and AMM (b) as thetime step size �t is redued from �t = St=2 to �t = St=5.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

(a) ABM

Analitic

Time

Adams-Bashforth (2nd order): dt = St / 3
Adams-Bashforth (3rd order): dt = St / 3
Adams-Bashforth (4th order): dt = St / 3

P
a
r
t
i
c
l
e
 
V
e
l
o
c
i
t
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

(b) AMM

Analitic
Adams-Moulton (2nd order): dt = St / 3
Adams-Moulton (3rd order): dt = St / 3
Adams-Moulton (4th order): dt = St / 3

Time

P
a
r
t
i
c
l
e
 
V
e
l
o
c
i
t
y

Fig. 3.5. Behavior of the solution by seond-, third- and fourth-order ABM (a)and AMM (b) using a time step size �t = St=3.In �gure 3.7 the temporal disretization error is shown for various timeintegration shemes. The disretization error is obtained by subtrating thenumerial solution to the exat analyti solution of equation 3.37.The two Euler methods show the expeted �rst-order behavior: the errorand the time step size both redue by the same amount. The impliit Eulersheme is more aurate than the expliit Euler ounterpart but the di�erenein the solution provided by the two shemes dereases as the time step sizedereases.The seond-order shemes show also the expeted error redution rate.The seond-order ABM (started by the seond-order RKM) yields a largerinitial error than both the PCM and the AMM (also started by the seond-order RKM) of the same order but the error redution rate remains the same.Reall that the seond-order AMM is the same as the seond-order CNM.A slight di�erene in the auray of the solution ours when Adamsmethods of the third-order are used: the ABM provides a slightly larger ini-tial error than AMM but the error redution rate is again the same as thetime step size dereases. We do not show here the estimates of the temporal
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Fig. 3.6. Behavior of the solution by seond, third and fourth-order RKM as thetime step size �t is inreased from �t = St=3 to �t = 1:5St.disretization error for the forth-order Adams methods, due to the osillatorysolution provided by the ABM (see �gure 3.4).The forth-order RKM is by far the most aurate sheme: the error is aboutfour orders of magnitude smaller than that of Euler methods and it is reduedby two orders of magnitude over the time step size redution onsidered.To investigate further the auray of temporal disretization, in �gure3.8 we evaluate the onvergene of partile veloity as the time step size isredued. We ompare the exat solution of equation 3.37 at time t = 4:0 withthe numerial solution provided by the shemes already onsidered in �gure3.7. We performed alulations up to that time using 8, 12, 16 and 20 timesteps orresponding to time step sizes of �t = St=2, �t = St=3, �t = St=4,�t = St=5 respetively. The onvergene rate is onsistent with the resultsshown in �gure 3.7. The impliit Euler, the seond-order PCM, RKM andABM underpredit the exat value. The expliit Euler and the seond-orderAMM (i.e. CNM) overpredit the exat value. All shemes show monotonionvergene towards the exat time step independent solution. As expeted,the most aurate referene solution is obtained using the forth-order RKM.To onlude this hapter, we point out that the interpolation error, whihmainly depends on the spatial resolution of the small-sale motions of thetubrulent ow (see Chapter 4), is always the major soure of numerial errorsin the extration of Lagrangian data. The time-stepping error is generally
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Fig. 3.8. Convergene of vp at time t = 4:0 as the time step size is redued forvarious time integration shemes.less signi�ant beause it is restrited to small values by enforement of theCourant number stability limit (Yeung and Pope, 1988; Yeung and Pope,1989).Appendix AConsider the partile equation of motion in the following form:



3.8 Appliation to the Generi Partile Equation of Motion 31�vni�t = F (xni )mi ; �xni�t = vni ; (3.54)where vni is partile veloity at time tn at its position xni . The term F (xni )represents the external fores ating on the partile of mass mi. Combiningthe above equations into one we get:�2xni�t2 = F (xni )mi ; (3.55)where xni is the numerial solution at time tn. Now, let Xni be the exatsolution of equation 3.56 at time tn, that is the solution without round-o�error 2. The numerial error at time tn an be de�ned as:�ni = xni �Xni : (3.56)Using equation 3.57 to replae x in equation 3.56, an equation for the timeevolution of the error �n is obtained:�2�ni�t2 = F (Xni + �ni )mi � �2Xni�t2 : (3.57)Observe that: �2Xni�t2 = F (Xni )mi ; (3.58)and that: F (Xni + �ni )� F (Xni ) = �F�X ����Xni � �ni ; (3.59)in the limit �ni ! 0. Thus, equation 3.58 an be rewritten as:�2�ni�t2 = 1mi �F�X ����Xni � �ni : (3.60)Assume to approximate the l.h.s. of equation 3.61 by means of a simple entral-di�erene three time-level sheme (also known as leapfrog method 3):2 The round-o� error is the error introdued beause the omputer only storesnumbers up to a ertain preision.3 The leapfrog method is the appliation of the midpoint rule to an integrationinterval of size 2�t



32 3 Numerial Methods for Partile Traking�n+1i � 2�ni + �n+1i�t2 = 1mi �F�X ����Xni � �ni : (3.61)For bounded osillatory solutions of the form:�ni = (�)n = (ei!�t)n ; (3.62)equation 3.61 an be reast as:�2 � � � 2 + �t2mi �F�X ����Xni !+ 1 = 0 (3.63)Assuming �t2mi � �F�X ���Xni = �, this equation has two solutions:�1;2 = 1 + �2 ��1�r1 + 4�� ; (3.64)whih orrespond to the error ampli�ation fator. The general solution is:�ni = C1 � �1 + C2 � �2 : (3.65)The sheme is said to be onditionally stable provided j�1;2j � 1. Figure 3.9shows the behavior of �1 and �2 as a funtion of ip�. When ip� < 2, �1 and�2 have an imaginary part, but for ip� � 2 both solutions are real. Complexvalues must be onsidered beause higher order systems may exhibit omplexeigenvalues. Values with zero or negative real part must be onsidered beausethey lead to bounded solutions.For ip� < 2, it an be shown that j�1;2j = 1: not only is the leapfrogsheme stable but also it su�ers no amplitude dissipation. When ip� > 2,j�2j > 1: to guarantee stability, we must alulate the largest value ofj m�1i �F=�X j and then set �t suh that:�t < 2r��� 1mi �F�X ��� : (3.66)
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