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In an earlier paper, Maxey and Corrsin [J. Atmos. Sci. 43, 1112 (1986) ] studied the motion of
small aerosol particles settling under gravity through an infinite, periodic, cellular flow field
subject to the effects of a Stokes drag force and inertia of the particles. Particle inertia was
shown to have an important influence on the motion: No permanent suspension in the flow
occurred, particles generally settled more rapidly than in still fluid, and the particle paths
merged into isolated asymptotic trajectories. This study is continued for particles that are not
necessarily much denser than the surrounding fluid but vary in density. Two basic responses
are identified: an aerosol response for particles denser than the fluid, similar to that mentioned,
and a bubble response for particles less dense. For both, particle accumulation is still a
recurring feature. Results of numerical simulations are discussed, together with the stability of
equilibrium points and the role of particle or fluid inertia.

|. INTRODUCTION

In an early study, Stommel' showed that small spherical
particles may be suspended indefinitely in a cellular flow
field by the action of upflow regions countering the effect of
gravitational settling. The flow studied was two-dimension-
al, incompressible, and given by a streamfunction ¢:

¥ = UyL sin(x,/L)sin(x,/L). (1)
Such a flow arises, for example, in thermal convection with
free-slip boundaries or in Langmuir circulations. Indeed, it
was in the latter context of the suspension of plankton by
Langmuir cells that Stommel' made his study. The motion
of the particles was governed by an instantaneous balance of
the Stokes drag force, generated by the relative motion of the
particle through the fluid, and the force due to gravity. The
center Y (¢) of a small spherical particle then moves accord-
ing to

Y, = U, sin(zl—)cos(ﬁ),

dt L L
ay, _ U, cos(——y—‘>sin(—&) + W,
dt L L
where W © is the Stokes terminal fall velocity for still fluid.
The particle velocity at any instant is the sum of the local
fluid velocity and the Stokes settling velocity. The concen-
tration of particles is low enough that they do not modify the
flow field or interact with each other. Stommel' showed that
the percentage of particles suspended in the cell depended on
the ratio W= W9 /U,, the nondimensional settling veloc-
ity. For W = O all particles are suspended, while for W>1no
suspension occurs, with a continuous range of particles sus-
pended for intermediate values of W.

This situation is illustrated by Fig. 1, which shows the
typical streamlines and velocity profiles for the spatially pe-
riodic, cellular flow field given by (1). The maximum flow
speed for each cell occurs on the cell boundaries, with stag-
nation points at the center and the four corners of each cell.
For W = 0 the particles simply move with the local fluid
velocity and behave as Lagrangian tracers. Since the cellular

(2)
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flow field is steady the particle pathlines coincide with the
streamlines shown in Fig. 1. The normal component of the
fluid velocity is zero on the cell boundaries, so in the absence
of gravitational settling there is no tendency for particles to
cross the boundaries and all particles introduced into a cell
remain there indefinitely. By contrast, for W>1 the Stokes
settling velocity at all times dominates the fluid velocity, and
the particle trajectories, found by solving (2), pass vertically
from one cell to the next even though they may pass through
local updraft regions. For intermediate values of W local
upflow in the fluid may be sufficiently strong to cause parti-
cle suspension by the flow. Typical particle trajectories for
W = 0.5 are shown in Fig. 2. Particles that are suspended
move continuously along closed paths encircling an equilib-
rium point, at which a particle would be held stationary in
the flow. The suspension or trapping region is bounded by a
particle path that joins the cell boundary, and outside this
region particles settle out, passing from one cell to the next.

A similar situation arises for buoyant particles which
are then suspended in the downflow regions. In Fig. 2, as in
the rest of this paper, the direction of gravitational accelera-
tion is taken to be in the positive x, direction. A further

Xy ——=

N

FIG. 1. Velocity profiles, shown for the left-hand cell, and streamlines,
shown for the right-hand cell, for the periodic cellular flow field (1): +,
stagnation point; arrows show direction of flow. Each cell is of side L.
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FIG. 2. Trajectories for particles without inertia settling under gravity in
the cellular flow field, Eq. (2), for W= 0.5: +, static equilibrium point;
———, bounding trajectory for the trapping region; ——, particle path.
Arrows on the cell boundaries indicate the circulation in each cell.

discussion of these results and their application to crystal
suspension in convecting magma chambers is given by
Marsh and Maxey.?

In a recent paper, Maxey and Corrsin® have reexamined
this problem for the motion of small aerosol particles for
which particle inertia is significant. The equation of motion
of a particle is then

dVv

mp—(—l—t—=6ﬁa#[U(Y(t),t)—V(t)] +m,g, (3)
where m » is the particle mass, a is the particle radius, V is the
particle velocity, u is the viscosity of the surrounding fluid,
and g is the acceleration due to gravity. The fluid velocity is
u(x,?). There is now, in addition to the dimensionless Stokes
settling velocity

W=W®/U,=m,g/6maul, 4)

another dimensionless parameter 1/4, sometimes referred
to as the Stokes number, which measures the dimensionless
response time of the particle motion to changes in the veloc-
ity of the surrounding fluid. The parameter 4 is defined by

4 = 6maul /m,U, (5)

and determines specifically how important particle inertia is,
with inertia more significant the smaller the value of 4. The
main conclusions of this study were that for all finite values
of 4 no particle is suspended indefinitely if Wis nonzero, and
that all particles eventually settle out under gravity, with an
average settling velocity generally greater than W . It was
also found, somewhat surprisingly, that for weak or moder-
ate inertia, when A is not small, all the particles eventually
collected along well-defined accumulation curves, with the
individual particle trajectories merging into isolated asymp-
totic paths. These paths had a periodic structure and passed
primarily through the downflow region of each cell, leading
to the observed increase in effective settling velocity.

The purpose of this paper is to consider the motion of a
general, small, spherical particle that is not necessarily much
denser than the surrounding fluid and to examine whether
this type of motion persists in a more general context. In the
following sections the results of some numerical simulations
are described for spherical particles as they move in response
to a periodic cellular flow field, as given by (1). Attention
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will be focused on how the character of the particle motion
changes with variations in the relative density of the particle
to the fluid. Two limiting cases will be discussed: the aerosol
limit, where the particle density is much greater than the
fluid density; and the bubble limit, where the particle density
is negligible.

Some related studies have been reported previously by
Wood and Jenkins* for particles in a cellular flow field, by
Manton® and Nielsen® for particles in various vortex flow
fields, and by Auton’ and Thomas et al.® for bubbles in a
vortex flow. Wood and Jenkins* computed a limited number
of particle trajectories for particles settling in water and in-
cluded in their equation of particle motion fluid drag forces
that depended nonlinearly on the relative velocity of the par-
ticle to the fluid and various fluid inertia effects such as add-
ed mass. Wood and Jenkins* noted particle suspension in
some instances, but in others found particles settling faster
than in still fluid. The approach of both Manton® and Niel-
sen® was to assume that (2) held as a first approximation,
i.e., the particle velocity is the sum of the local fluid velocity
and the settling velocity for still fluid, and to then include
inertial terms or other terms as small corrections. Manton®
analyzed the linear stability of the equilibrium suspension
points where the local, upward, fluid velocity holds a parti-
cle stationary against gravitational settling. Manton found
that for both a potential line vortex or a uniform vorticity
distribution these points were unstable. Nielsen® found simi-
lar results, but also found that the equilibrium points become
stable if the particle is less dense than the surrounding fluid.
This result also agrees with Auton’s’ observation that for
bubbles the equilibrium point in a line vortex flow is stable,
and that for a region around this point the bubbles spiral in
toward it and are trapped.

In the cellular flow field the equilibrium points are un-
stable for aerosol particles with inertia, as in (3), and corre-
spondingly no permanent particle suspension was found.
The stability or otherwise of these points provides an indica-
tion of whether or not particle suspension may occur. The
question of the linear stability of the equilibrium points is
discussed in Sec. III. A simplified explanation of these
changes in stability characteristics, though, can be given in
terms of the opposing roles of particle inertia and added
mass or fluid acceleration effects. In the examples mentioned
above and in the cellular flow field context a particle subject
only to gravitational settling and fluid drag forces, but with
negligible inertia, may be suspended at an equilibrium point
in the flow. If displaced slightly the particle will move along
a simple closed path, encircling the equilibrium points, simi-
lar to the paths shown in Fig. 2. An aerosol particle with
particle inertia will not follow such a closed path, but will
tend to spiral outward due to its inertia. The effects of added
mass of the particle and fluid acceleration act in the opposite
sense to particle inertia, so that a buoyant particle, for which
these effects dominate particle inertia, will tend to spiral in-
ward back toward the equilibrium point.

In Sec. IT we give a statement of the equation of particle
motion to be used and define the nondimensional param-
eters. In Secs. ITI-VI, the numerical results from simulations
of the particle motions are described.
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Il. EQUATION OF PARTICLE MOTION

The equation of motion for a small rigid sphere in a
nonuniform or unsteady flow field under general conditions®
is

dVv Du
m — = —_ —_—
P (m, mF)g+mFDt v
1 d 1
——my AV —uY - — 2\72)
2mth( T
— 6mauX(t) — 61ra%ufd¢—dﬁ7—, (6)
o mv(t—1T)
where
X(t) =V() —u(Y(#),t) — La’V2u (7

and in addition to previously defined terms m . is the mass of
the displaced fluid and v is the kinematic viscosity of the
surrounding fluid. The term in Du/Dt¢ is the fluid element
acceleration at the instantaneous position of the particle and
represents the fluid force on the particle from the undis-
turbed flow field. Otherwise, time derivatives are taken fol-
lowing a particle trajectory. Also included in (6) are the
buoyancy force of the fluid on the particle, the added mass
effect, the Stokes drag law, the Basset history term, and
Faxen corrections for the nonuniform flow field. Equation
(6) is applicable to small particles at low Reynolds numbers
provided that

a/LLl, aW®/v<l, a*Uy/Lv<l, (8)

based on the scales U, and L for the cellular flow field.

The inclusion of the Basset history term in the form
given in (6) further requires that the initial particle velocity
V(¢ = 0) be given by the condition that X(¢ = 0) defined by
(7) vanishes, namely,

V(t=0) =u(Y(0),0} + { a’V?u. 9

Other particle velocity conditions can be included provided
the Basset history term is modified accordingly.

Equation (6) as it stands is quite complicated and a
simplified equation of motion will be considered instead,
where the Basset history term is neglected and the Faxen
corrections are omitted. For the steady cellular flow field
(1) the Faxen corrections simplify as

a*Vu = —2d%u/L? (10)

and their effect in (6) is equivalent to decreasing by a very
small amount the local value of u(Y,?). This is unlikely to
have any significant result on the general particle motion
and will not be considered further. The Basset history term
may also be neglected as a first approximation. The primary
focus here is on the effect of a small but finite degree of
inertia on the particle motion; indeed, the restrictions (8)
require that the effects of fluid inertia be small. If the inertia
terms are neglected altogether, (6) reduces to a quasisteady
balance of gravitational forces with the Stokes drag force and
then X(#) is simply a constant. If corrections for inertia are
included it may be shown® that the Basset history term is less
significant than the other terms. Test computations with the
Basset term included showed that it only had a minor effect
on the results presented here. It is neglected in the present
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treatment. The simplified equation of motion for particles in
the steady cellular flow field is

P2 ) ar

= (m, — mp)g+ 6mau[u(Y,t) — V()]

+ mewVa + L m;V-Vu, (1

which differs from Eq. (3) for an aerosol particle by the
inclusion of terms in m.

One of the principle aims of this study is to see how the
particle motion changes as the ratio of particle to fluid densi-
ties, or equivalently the ratio of the masses m, and mg, is
varied. The ratio m,/m; may vary between zero and infin-
ity; it is useful to divide this into the two ranges, correspond-
ing to two different sets of physical conditions. The first of
these is the aerosol range where the particle density remains
significantly greater than the fluid density, and which spe-
cifically covers the range m, >2m . Here the fluid accelera-
tion and added mass terms of (11) are regarded as small
perturbations to the basic aerosol problem. The mass of the
particle, or rather (m, + im), is taken as the reference val-
ue and the simplified equation of motion (11) is rewritten as

%:X = au(Y,)) + W — V()] + R (u + %V)-Vu, (12)

where
a = 6rau/(m, + i mg), (13)
R=mg/(m, +1my), (14)
and the Stokes settling velocity W' for still fluid is
W = (m, — mp)g/6mau. (15)

The equation of motion is scaled by U, the maximum
flow speed in the cell and by L, the size of the cell as given by
(1). Nondimensional variables are introduced as follows:

x* =X *ZX, t*=%, V*=_Y_, u* =0
L L L U, U,
The scaled form of (12), with the asterisks suppressed, is
‘fi_:’ —A[u(Y,) +W—V()] +R (u + —%—V)-Vu.
(16)

The nondimensional parameters characterizing the particle
motion are the inertia parameter 4 now defined as

A=aL /U, (17)

and the scaled particle settling velocity for still-fluid W de-
fined as

W =W /U, (18)

These definitions agree with those given previously in (4)
and (5) when the density of the surrounding fluid is neglect-
ed and my. is zero.

In the aerosol range we consider the effect of varying the
mass ratio parameter R while keeping 4 and W fixed. The
mass ratio R is zero for an aerosol system, where m . is zero,
and increases continuously to a value of 0.4 when the ratio
m,/my. equals 2. For R equal to zero the scaled equation of
particle motion (16) is the same as for the aerosol system
considered by Maxey and Corrsin.? Thus by varying the val-
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FIG. 3. Variations of W, 4, and m,/m. for fixed values of Q and B with
changing values of the mass ratio parameter R: Curves for 4 /B, W /Q,
m,/m are as marked.

ue of the mass ratio R a direct connection with the study in
Ref. 3 for aerosol particles can be made and the effect of
limited added mass and fluid acceleration effects can be in-
vestigated. In a physical experiment these conditions can be
achieved by varying the density of the fluid and the scales U,
and L of the flow field while keeping the size of the particle
and its mass fixed. Thus in the aerosol range the particle
properties are regarded as fixed, while the flow conditions in
the surrounding fluid are varied in such a way as to maintain
constant values of 4 and W. The results of the study in Ref. 3
show that the parameters 4 and W are the most natural to
use: Indeed, we find that whether or not particle suspension
can occur depends directly on the value of W, the ratio of
still-fluid settling velocity to the maximum upflow of U,
rather than some other velocity scale.

While these parameters are well suited to the aerosol
problem, they are not convenient for the second range,
which covers particle masses m, between zero and 2m.
This range includes both the bubble limit, where the particle
is a vapor bubble of negligible mass and the transition range,
where the particle changes from being more dense to less
dense than the surrounding fluid. A particle of the same
density as the fluid is neutrally buoyant and has zero settling
velocity. Furthermore, as the particle density decreases the
particle ceases to settle under gravity, but instead rises due to
buoyancy forces. It is no longer appropriate to regard the
dimensionless settling velocity W as fixed; some other scal-
ing that takes account of the changes in relative density is
needed. The physical context that is considered in this sec-
ond range is one in which the fluid properties, flow speed,
and length scales are fixed, but the mass of the particle m,
varies. We thus investigate the motion of particles of a fixed
size, but varying density, in a given cellular flow field.

This second range, which covers 0<m ,/mp<2, is re-

1918 Phys. Fluids, Vol. 30, No. 7, July 1987

ferred to here as the bubble range. A spherical bubble of
radius @ and negligible particle mass m, = O rises vertically
in still fluid at a terminal velocity

WS = — m,g/6mau, (19)

as given by (15). This is calculated from the Stokes drag law
for a rigid particle, but this is also a good approximation'® for
small vapor bubbles in the presence of surface impurities.
Other appropriate forms of the Stokes law may be incorpo-
rated as desired. The nondimensional speed, scaled by U, at
which such a bubble will rise in still fluid is

Q= |W| =mzg/6mauU,. (20)

This bubble rise speed Q will be used as the reference value
for the bubble range. Similarly, the inertia parameter 4 fora
vapor bubble will be used as the reference value, namely,

B =6maulL /(4 mpUy), (21)

based on (13) and (17) for m, equal to zero.

As the relative densities of the particle and fluid vary
over the bubble range the values of B and Q will be regarded
as the fixed parameters. The actual values of the settling
velocity parameter W and inertia parameter 4 will change
with changes in the ratio m,/m . These changes are speci-
fied in terms of the mass ratio parameter R, defined by (14),
as

A=RB/2 (23)

and the ratio m,/m - is related to the mass ratio parameter R
by

m,/my = 1/R — ). (24)

Over the bubble range the parameter R increases continu-
ously from a value of 0.4 when m, = 2m; to a value of 2.0
when m, = 0 in the bubble limit. When the particle is neu-
trally buoyant and m, = m, then R has a value of 3.
Figure 3 shows how W, 4, and m,/m vary with different
values of the mass ratio parameter R for fixed values of Qand
B. Note that W is positive for R <3 and negative for R >3,
corresponding to the transition from a denser particle that
settles downward to a buoyant particle that rises upward in
still fluid.

The equations of particle motion for particles in the cel-
lular flow field (1) are, from (16),

1 dv , 1 R
Z—dtl + ¥V, =sin Y, cos Y2+?;(V1008 Y cos Y,

— V,sin Y| sin Y,) +§-sin Y, cos Y,
(25a)

1 4v,
A dt

+V,

1 R

= —cos Y,;sin¥Y,+ W +7;(Vl sin ¥, sin Y,

— V,cos Y, cos Y,) + %sin Y, cos Y,. (25b)

Solutions to Egs. (25) may be computed with suitable
choices for the initial particle position and velocity.
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lil. EQUILIBRIUM POINTS AND STABILITY

The existence or not of equilibrium points for the parti-
cles has been alluded to in Secs. I and II; this question has an
important bearing on the general features of the particle mo-
tion. A linear stability analysis of these points further pro-
vides an indication of whether or not particle suspension will
occur. A particle will be held stationary by the flow if the net
force on the particle vanishes. Based on the equations of
motion as given by (25), an equilibrium point (Y9, ¥9)
must satisfy the conditions

0=sinY%cos Y +R/Asin Y9 cos Y9, (26)

O0=W—cosY%sin Y9+ R/Asin Y) cos YI. (27)
Equilibrium is determined by the value of W and the value of
R /A4, which from (23) isalsoequal to2/B, with B theinertia
parameter for a bubble. Equilibrium points may be found on
the vertical cell boundaries where sin Y9 vanishes. For ex-
ample, for Y = 0, (26) is immediately satisfied and static
equilibrium points at Y are specified by solutions to

W=sinY) —R/Acos Y)sin Y3, (28)

where these exist. When R is zero these equilibrium points
occur where Y is equal to sin ™' ().

Equilibrium points also exist within the interior of each
cell provided W is small enough. Here sin Y{ is nonzero and
may be cancelled from (26}, which leads, after elimination
of cos Y9 from (27), to the conditions

sin2Y% = —2W(R/4)/(1+R?*/4?), (29)
cos Y = W/[(1+R*A%)sin Y3]. (30)

Solutions of (29) and (30) are chosen so that as R—0, Y 9
—1/2. These results apply to particles denser than the fluid,
in which case W is positive and the equilibrium point lies in
the range 0< Y S <7/2, 7/2< Y3 <m; or to particles less dense
than the fluid, with W negative and 7/2<Y{<m, 0<Y?$

<#/2. Equilibrium points exist for 4 /R>2 if

|W|<(1+R*A4% (1 —R¥>4%)'?, (31)
or for 4 /R <2 if
|W|<i(4 /R + R /A4). (32)

The stability of these equilibrium points may be deter-
mined by a linearization of the equations of particle motion
(25) about the static equilibrium point (Y9,Y9). The lin-
earized equations have solutions proportional to exp(4f)
and the possible values of A are the roots of the quartic poly-
nomial

A+ 2403 + KA+ KA+ Ks=0, (33)
where
K;=A?—Rc,+1R%,, (34a)
K,=ARc, — ARc, + 1 R %c,, (34b)
K,=A%,+ ARc, + R?cos 2Y$ cos 2Y9, (34¢)
¢, =cos2Y9 +cos2Y9, (34d)
¢, =sin? Y9 sin> Y9 — cos® Y9 cos® Y3, (34¢)
c;=cos Y% cos Y (cos 2Y5 —cos 2Y9). (34)

In general the roots of the polynomial (33) must be found
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numerically, but some special results may be deduced.

In the aerosol limit R = 0, the coefficients (34) simplify
considerably and explicit expressions for A can be found. For
points on the cell boundary, Y{ = 0 and W < 1, there is one
positive real root. When W = 1 the equilibrium points on the
cell boundary and the internal equilibrium points merge at
(Y9,Y9) equal to (0,7/2). The roots are then 4 =0 or
A = — A and the point is neutrally stable. The roots for the
internal equilibrium points for W < 1 form two complex con-
jugate pairs

A=r+ib, A=s5+ib, (35)
where

rs= —b? (36a)

Fis= —A. (36b)

Atleast one or the other of  and s must be positive in order to
satisfy (36a), and so this point is unstable.

Numerical evaluations show that in general the equilib-
rium points on the cell boundaries are unstable for all values
of R. At certain values of W the growth rates of these instabi-
lities are small. A particle passing close to such a point may
appear to be temporarily suspended in the flow, as found in
the simulation results of Sec. IV. With R =0.4 and 4 = 2,
the growth rate 4 has a minimum positive value of O( 1072%)
at W= 1.019. Within the aerosol range O<R <0.4, the inter-
nal equilibrium points were found to be unstable over the
entire range. This is consistent with the observed lack of
particle suspension.

As the mass ratio parameter R increases, approaching
the bubble limit of R = 2, stable equilibrium points may be
found in the interior of each cell. Within the range 0.4<R <2
it is appropriate to use the ‘“bubble range” parameters intro-
duced in Sec. IT and the parameters B and Q instead of 4 and
W. Figure 4 shows the stability boundary as a function of R
for B = 10. At R = 2, the bubble limit, equilibrium points
exist if the still-fluid, bubble rise speed Q is less than 1.019.
However, the point is stable only if @ is less than 1.00. As R
decreases from 2 the maximum values of Q for stability and
for existence of equilibrium both increase, with the latter
being greater. As R approaches  both tend to infinity.

The same stability boundary can be given in terms of W,
which is also shown in Fig. 4. The values of W and Q are
related by (22) and as R passes through the value of §, corre-
sponding to a neutrally buoyant particle, W goes to zero and
changes sign for any fixed value of Q. Equilibrium is possible
if |W|<1.019 independent of R, while stability, for some
range of W, is only possible if R is greater than %, i.e., if the
particle is less dense than the surrounding fluid. In fact, the
transition between instability and possible stability will in all
cases occur when R = 2and the particle is neutrally buoyant.
This may be seen by examining the stability polynomial (33)
for W =0 and R = 2. The equilibrium point then lies at the
center of the cell at the stagnation point Y = 7/2 and ¥

= 77/2 from (29) and (30). The roots of the polynomial are
A = + i and a pair of conjugate complex roots, both with
negative real parts. As R increases through the value of } all
the roots correspond to stable solutions. In any physical situ-
ation the value of Q is finite and the still-fluid settling veloc-
ity W will pass through zero at this point, R = 3. Hence the
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FIG. 4. Stability diagram for the particle equilibrium points in the interior
of each cell as the mass ratio parameter R is varied and as Wor Q are varied.
Note that Q and W are related by (22). The inertia parameter B = 10.0.

stability transition will always occur at R = % irrespective of
the value of Q or B.

These observations about particle stability agree with
the results found in other flow fields for similar equations of
particle motion. As discussed in Sec. I, Nielsen® found that
particle equilibrium points became stable as the density of
the particle decreased below that of the surrounding field.
Manton® found the equilibrium points for aerosol particles
to be unstable, while Auton’ found them to be stable for
bubbles. Further, these results quantify the simplified expla-
nation for the change in stability properties noted in Sec. L.
This change in behavior as the particle changes from being
more dense to less dense than the surrounding fluid is dis-
cussed further in Sec. VIL

IV. AEROSOL RANGE: R<0.4

Numerical solutions for the general motion of an aero-
sol particle may be computed from the equations of motion
(25). Since the Basset history term is not included there is no
specific initial condition on the particle velocity. For con-
venience the initial particle velocity has been taken here to be
zero. The motion of the particles is not sensitive to the choice
of the initial velocity, especially if attention is focused on the
long-term characteristics of the motion.
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Some sample particle trajectories for aerosol particles
R = 0 are shown in Fig. 5, with dimensionless still-fluid set-
tling velocity W = 0.5 and inertia parameter 4 = 5. Five dif-
ferent particle trajectories are shown, none of which are
closed or show particle suspension even though several of
them originate in the upflow regions of the cells. This may be
contrasted with Fig. 2, where there is no particle inertia and
where a significant proportion of the particles are suspend-
ed. A general feature for finite values of the inertia parameter
A is that particle suspension does not occur and that all parti-
cles eventually settle out under gravity. A stability analysis
for the equilibrium points within each cell, as shown in Fig.
2, shows that these points are unstable for 4 < «. Another
feature of the particle motion that is evident in Fig. 5 is the
tendency for the trajectories to merge into isolated asympto-
tic paths. Two trajectories have actually merged, while two
others in different cells have developed the same form. This,
too, is a general feature for the motion of aerosol particles
with inertia, as reported previously.>

A useful way to view the motion of the particles is to
follow the paths of an array of particles initially distributed
uniformly throughout the cellular flow field. Then at subse-
quent times the positions are plotted for all particles that lie
within a selected set of cells. Here the four adjoining cells
0<Y,,Y,<2r are used. These particle position diagrams
show any tendency the particles may have to accumulate
locally in parts of the flow field. The required trajectories are
obtained by releasing 2V ? particles, at # = 0, with initial posi-
tions

X2

FIG. 5. Trajectories for aerosol (R = 0) particles settling under gravity in
the cellular flow field, Eq. (25), for W = 0.5 and 4 = 5. Particles start from
rest, and initial positions (Y,(0)/7,Y,(0)/7) are (0.7,0.5), (1.1,0.5),
(1.7,0.5), (2.1,0.5), and (2.5,0.5). Arrows on trajectories are drawn at in-
tervals At = 2.0; arrows on the cell boundaries indicate the circulation in
the adjoining cell.
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FIG. 6. Time sequence of particle position plots for aerosol (R = 0) particles settling under gravity for W= 0.5and 4 = 5: (a) t =0; (b) t = 10; (¢) t = 30;
(d) t = 80. Particle positions are marked x; arrows on the cell boundaries indicate the circulation in each cell; gravity acts in the positive x, direction.

(Y,(t = 0),Y,(t = 0)) = ((n, — })7/N,(n, — /N),
37

where n, = 1,2,...,2N and n, = 1,2,...,N. These trajectories
are extended using the periodic nature of the flow field to
give the trajectories of other particles in this infinite array. It
is simple to verify that if (Y, (#),Y,(¢))is a particle trajectory,
so also are (Y,(¢) + 7, Y,(¢) + ) and (Y,(¢) + 2m,m,
Y,(2) + 2m,7) for any integers m, and m,. Typically a value
of N = 10 has been used. The particle position diagrams are
generated by computing the 2N ? trajectories specified by
(37) and then reducing them through the periodicity condi-
tions to give the positions within the four cells.

A time sequence of these position plots is shown in Fig.
6, again for 4 = 5 and W = 0.5. After the particles are re-
leased a void develops in the upflow region of each cell,
where particles would have been suspended in the absence of
inertia. The particles then proceed to collect within a band

1921 Phys. Fluids, Vol. 30, No. 7, July 1987

t = 30 and eventually accumulate on well-defined, isolated
curves which remain the same at all subsequent times. These
position plots confirm the observation that all the particles
eventually settle out. Further, since these accumulation
curves are asymptotically stationary this means that the in-
dividual particles must remain on them at all times and move
along them. These curves thus correspond to segments of
some asymptotic particle trajectory, into which the neigh-
boring trajectories merge. Two distinct curves exist in each
cell, both curves are periodic in the x, direction, and both
curves repeat every two cells. This corresponds to two dis-
tinct asymptotic trajectories that pass through each celj;
these trajectories are periodic in x,. The two curves are not
independent, though, since one may be obtained from the
other by a displacement of one cell in the x, direction and a
reflection about x, = 7.

Other particle position plots are shown in Fig. 7. In the
absence of particle inertia there is no tendency for particles

M. R. Maxey 1921
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FIG. 7. Particle position plots of aerosol particles, R = 0, at ¢+ =40 for
W =10.5: (a) no inertia, 4 is infinite; (b) particles with inertia, 4 = 2.

to accumulate and particles remain scattered throughout
each cell. The individual particle trajectories are distinct, but
are either closed or periodic in x,, as illustrated by Fig. 2. For
A = 2 the particles accumulate in much the same way as for
A =35 and the trajectories eventually merge into isolated
asymptotic paths. Particle position plots thus provide not
only information about local accumulations of particles, but
also show whether or not the trajectories merge, and if they
do the plots give the structure of the asymptotic trajectories.

When the mass ratio parameter R is nonzero the particle
trajectories show very similar features to those of the aerosol
particles R = 0. As R varies between 0 and 0.4 there are few
significant differences: All particles eventually settle out un-
der gravity and the trajectories in general merge into asymp-
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totic paths. For example, position plots for R = 0.2 and
R = 0.4 are shown in Fig. 8, and these are much the same as
for R = 0 shown in Fig. 7(b). For still-fluid settling veloc-
ities W greater than about 1, particle suspension is impossi-
ble even in the absence of inertia. When R = 0, the particle
trajectories merge and asymptotically the particles settle out
along the vertical cell boundaries. Some sample trajectories
in Fig. 9 for # = 1.25 illustrate this process. After falling
through four cells all but one of the original nine trajectoreis
have collected along the cell boundaries. When R equals 0.4,
the same process takes place, but takes longer to become
established.

As the still-fluid settling velocity W is increased further
there is a difference in the motions for R =0 and R = 0.4.
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FIG. 9. Trajectories for particles settling under gravity with W = 1.25 and 4 = 2: (a) mass ratio parameter R = 0; (b) R = 0.4. Initial particle positions are
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Upto W = 1.8 atleast, particles accumulate on the cell walls
for either value of R. For W = 2.0, the aerosol particles
(R = 0) still accumulate on the cell walls, as shown by the
particle position plot of Fig. 10(a), at t = 80. For R = 0.4,
however, the particles are scattered throughout the cells
with no apparent structure. Figure 10(b) shows the position
plotatz = 80. Atf = 160 (not shown) it is equally disorgan-
ized. A check of individual trajectories, and in particular of
the values of Y and V as the trajectories cross cell boundaries
in the x, direction, confirms this lack of asymptotic merging
of the trajectories in this case. Why this change in behavior
takes place is not clear and no explanation is offered here
save to note that it is an effect of the increased added mass,
which, as noted in Sec. I, acts in opposition to the inertia of
the particle.

Finally, it is interesting to compare the average particle
settling velocity (V) for the two different values of R, R =0
and R = 0.4. This may be found by evaluating V,(¢) for a
large number of particles initially distributed uniformly
through the cells and averaging over all the particles. Alter-
natively, where the particle trajectories merge into an
asymptotic path it is sufficient to compute a single trajectory
far enough so that it has reached the asymptotic, periodic
form and then evaluate the time taken to cross two or four
cells in the x, direction, depending on the asymptotic period-

1923 Phys. Fluids, Vol. 30, No. 7, July 1987

icity. Figure 11 shows the computed average settling velocity
(V,) for both values of R. Note that in the absence of particle
inertia, particles remain uniformly distributed so that
<V2) =W.

When 4 = 2 and R = 0, the graph of (¥,) goes through
several transitions that coincide with the local minima or
maxima of (¥,). For W<0.17 the asymptotic particle trajec-
tories are not confined to a single vertical column of cells, but
go at 45° to the vertical on either side of the vertical. The
trajectories have a periodicity of one cell vertically by one
cell horizontally. Above W = (.18 the particles settle verti-
cally, with a period of two cells in the x, direction. Between
W = 0.675 and W = 0.7 there is another transition where
the period in the x, direction becomes four cells. For W>1,
the particles settle along the vertical cell boundaries, experi-
encing successively upflow and downflow regions. The up-
flow significantly reduces the settling velocity. Indeed, for
W = 1 the trajectory passes through an equilibrium point
which is neutrally stable and (V,) essentially drops to zero.
As W becomes large, the flow field has decreasing influence
on settling and eventually (¥,) is approximately the same as
w.

When 4 = 2 and R = 0.4 we do not have the same tran-
sitions. The particles settle in a single vertical column of
cells, with a period of two cells in the x, direction. Again, for
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FIG. 10. Particle position plots at # = 80 for particles with inertia parameter
A = 2, still-fluid settling velocity W = 2.0: (a) mass ratio parameter R = 0;
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W greater than about 1 the particles collect along the vertical
boundaries and the settling velocity (V) is reduced by the
upflow regions. An equilibrium point exists for ¥ = 1.02,
and while it is unstable, the growth rates are so small that it is
close to being neutrally stable.

The general conclusions from these and other computa-
tions are first, that for particles significantly denser than the
surrounding fluid, particle suspension does not occur. Sec-
ond, the asymptotic merging of trajectories into isolated
pathsis a general feature that is not sensitive to the value of R
within this range. Finally, the average settling velocity of the
particles is greater than that in still fluid if the still-fluid
settling velocity Wis small, but is significantly reduced when
the value of W approaches 1.

1924 Phys. Fluids, Vol. 30, No. 7, July 1987
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FIG. 11. Average particle settling velocity (V) against still-fluid settling
velocity W forA =2: — R =0.0; --—-, R = 0.4.

V. BUBBLE LIMIT: R=2

The stability analysis in Sec. III indicates that for bubble
particles stable equilibrium points exist which may lead to
the permanent suspension of the particles. To test this possi-
bility, some sample trajectories have been computed for bub-
ble particles R = 2, and for a still-fluid, bubble rise speed Q
of 0.5; see Fig. 12(a). The inertia parameter of the bubble B
is set equal to 10.0, the same as for the stability diagram in
Fig. 4. Six of the particles released spiral in toward interior
equilibrium points and never escape from their initial cell,
while a seventh particle is trapped after passing through two
cells. The two particles that do rise through the cells zigzag
through the upflow regions of each cell, rising faster than in
still fluid. In contrast, Fig. 12(b) shows the particle trajec-
tories for Q = 1.25. Here there are no equlibrium points and
all the particles escape, rising rapidly through the upflow
regions of each cell.

The particle position diagram for Q = 0.5, Fig. 13,
shows the corresponding positions of an initially uniform
array of particles at ¢ = 20, the time at which the computa-
tions in Fig. 12 were stopped. There is a strong clustering of
particles about the equilibrium points, and if the computa-
tions are continued further it is found that 90% of the parti-
cles spiral in toward these points and are trapped. The parti-
cle position plots can also be used to find the long-term
asymptotic form of the particle motion and whether or not
bubble particles exhibit the same merging of trajectories
found for aerosol particles. The long-term behavior for
Q = 1.251s shown in Fig. 14(a). All the particles here have
collected along simple, well-defined curves that pass
through the central region of each cell and are biased toward
the upflow region of each cell. The merging of trajectories
into isolated paths thus still occurs. But the accumulation for
rapidly rising bubbles is between vertical cell boundaries, as
opposed to on the boundaries as found for rapidly settling
aerosol particles. Figure 14(b) gives the asymptotic behav-
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FIG. 12. Particle trajectories for bubbles, R = 2, rising through the cellular flow field due to buoyancy forces: (a) still-fluid bubble rise velocity Q = 1.25; (b)
@ = 0.5. Bubble inertia parameter B = 10.0; initial particle positions are as in Fig. 6, but with ¥,(0)/7 = 4.5 in (a) and Y,(0)/7 = 3.5 in (b). The smaller

arrows are drawn on the trajectories at time intervals Az = 2 up to ¢ = 20.

ior for Q = 0.8. In this instance there are both stable equilib-
rium points, as marked by the isolated cross marks, and iso-
lated accumulation curves. Although these stable
equilibrium points appear as single marks in the diagrams,
they each in fact represent some 20 particles that have been
trapped there.

The general picture that emerges is that for Q large
enough so that no equilibrium points exist, the particles ac-
cumulate along a simple isolated curve, as in Fig. 14(b). For
small values of Q less than about 0.4, the effect of the stable
equilibrium points dominates and all the particles are
trapped, held in suspension by the flow at these isolated
points. For intermediate values of Q, a combination of these
two responses occurs with more and more particles trapped
as Q decreases, and less rising along the isolated asymptotic
path. The fraction of particles suspended in the flow as Q
varies is given in Fig. 15, as is the average particle rise veloc-
ity — (¥,). This observation that increasingly more parti-
cles are suspended as Q decreases is consistent with the re-
sults of Auton’ and of Thomas et al.,® who studied the
motion of bubbles in the irrotational flow caused by a uni-
form vortex cylinder or line vortex and found that as the
strength of the vortex increased, particles over a wider area
would be drawn in toward the equilibrium point and
trapped. The equation of particle motion that Auton’ and
Thomas et al.® used, however, was somewhat different from

1925 Phys. Fluids, Vol. 30, No. 7, July 1987

FIG. 13. Particle position plot at ¢ = 20 for bubbles, R = 2.0, with inertia
parameter B = 10 and still-fluid rise velocity @ = 0.5.
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parameter B = 10.

(16) and was based on a large particle Reynolds number, as
opposed to the Stokes flow regime assumed here.

VI. TRANSITION RANGE: 0.4 <R <2

As the mass ratio parameter R varies between 2 and 0.4
a transition takes place between the “bubble” response de-
scribed in Sec. V and the “aerosol” response described in
Sec. IV. Particles less dense than the surrounding fluid R > 2
exhibit much the same type of motion as found for the bub-
bles. Particles either accumulate along an isolated curve
passing through the central region of each cell, rising con-
tinuously, or else are trapped at some stable equilibrium
point. Again, in this range it is appropriate to use the param-
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FIG. 15. Percentage of bubbles suspended at the equilibrium points (solid
curve) and the average particle rise velocity { — V,) (dashed curve) aver-
aged over all particles as the still-fluid rise velocity Q is varied. Inertia pa-
rameter B = 10 and mass ratio parameter R = 2.

eters B and Q and assign fixed values to these as R is varied.
The particle position diagram, Fig. 16, shows the particle
accumulation for B =5 and Q = 1.25 when R is 1.0. Here
the corresponding value of Wis — 0.625. Particles are con-
centrated at the stable equilibrium points or else collect
along isolated accumulation curves. The accumulation pro-
cess takes longer than for R = 2, but is similar for the same
value of W. Eventually 49% of the particles are suspended
by the equilibrium points and the accumulation curve be-
comes more sharply defined.

As R approaches the value of , a transition takes place.
The value of the actual still-fluid settling velocity W goes to
zero for any fixed value of Q and the equilibrium points in the
cells become unstable for R less than 3. Figure 17(a) is a
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FIG. 16. Particle position plot ¢ = 100 for particles less dense than the sur-
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sponding value of W= — 0.625.
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fluid, R = 0.70; (b) particles denser than the fluid, R = 0.64. Inertia pa-
rameter B = 10and Q@ = 1.25.

long-term particle position plot for R = 0.7 just above the
transition value. The value of Wis about — 0.09. The equi-
librium points are stable and for this low value of W all the
particles are eventually trapped at these points. Figure
17(b), on the other hand, shows the particle positions for
R = 0.64 just below the transition value. The corresponding
value of Wis + 0.078. No particle suspension occurs and
the particles accumulate, albeit slowly, along isolated curves
passing through the downflow region of each cell. This is
essentially the response found for the aerosol range R<0.4.

Other values of Q may be tested, but all seem to demon-
strate the same features. For any finite value of Q, the transi-
tion takes place at R = %: For R >} the response is bubble-
like, and for R <} it is aerosol-like.

1927 Phys. Fluids, Vol. 30, No. 7, July 1987

VIl. CONCLUDING REMARKS

The preceding results show clearly that the long-term
accumulation of particles in a cellular flow is a general fea-
ture not confined to aerosol particles, but applicable to parti-
cles of arbitrary density compared to that of the fluid. The
accumulation may be an asymptotic merging of individual
particle trajectories into some isolated path through the
cells, or it may be an accumulation at some equilibrium
point. The critical feature that is important is the inertia of
the particles or the inertia of the fluid, in the case of bubbles.
It is this aspect that distinguishes the particle motion found
here from the results given by Stommel,' where, as illustrat-
ed by Fig. 7, there is no tendency for particles to accumulate
in the absence of inertia. Where the particles do accumulate
along some path this often leads to an increase in the rate at
which particles pass through the cells.

From a mathematical viewpoint this phenomenon is an
example of stable attractor sets for a dissipative non-Hamil-
tonian system.'! From a physical viewpoint, though, it
shows that it is misleading to consider the motion of discrete
particles as similar to that of Lagrangian fluid elements,
especially in a steady flow. The concentration of particles
preferentially in one region of the flow field compared to
another can influence not only particle settling velocities,
but also the dispersion of particles or particle coagulation. In
an unsteady flow or a turbulent flow it is unlikely that the
same degree of ordered structure will develop, but a tenden-
cy for particles to concentrate in certain regions will still
persist.

Some insight into this accumulation process may be
gained by considering the effect of weak inertia. The equa-
tion of particle motion (16), as used here, may be approxi-
mated for large values of 4, the inertia parameter, as

1 d
V() =u(Y,t) + W— XE(H(YJ) + W)

R(3 1 1
* A(z 3 W)V"+O(A2)’
where the inertia terms have been estimated by setting V(¢)
equal to u(Y,?) + W as a first approximation. This allows
the particle velocity to be specified completely by its instan-
taneous position Y (¢), and (38) may be written in terms of a
“particle flow” field v:

(38)

V() =v(Y(2),t), (39)
1(/3du
v(x,t) = u(x,t) + W———(—-—— + (u+ W)~Vu)
A\ ot
R/3 1
— = — W ):Vu. 40
+ A(Z ut 2 ) " (40)

Even if the flow field u(x,?) is incompressible, the “particle
flow” field v will be compressible:

1/3 du; du;
V-v=——(—R—l> —_— (41)
AN2 Jx; Ox;
and
%EE:L(@L+‘9_"L>2_J_(‘9_“E_%)Z, 42)
ox; dx; 4A\dx; OJx; 4\0x; Ox,

The divergence of v(x,t) for aerosol particles, R <3, is posi-
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tive in regions of strong vorticity and negative where the
strain rate is dominant. Thus during the motion of such par-
ticles, aerosol particles may be expected to concentrate in
regions of high strain rate or low vorticity. For bubble parti-
cles, R > %, the opposite bias should hold.

In the cellular flow field example the strain rate is great-
est near the corners of each cell, while the vorticity is largest
near the center of each cell. These comments are then consis-
tent with the general observation that rapidly settling aero-
sol particles collect along the cell boundaries and rapidly
rising bubbles accumulate along paths passing through the
central portion of each cell. These arguments further genera-
lize the description of the change of stability characteristics
for the equilibrium points given in Secs. I and III. These
comments, however, are not restricted to the cellular flow
problem and should apply in a general context.
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