
BOUNDARY LAYERS, WAKES, 
AND JETS 

ll.1 Viscous regions in high Reynolds number flow 

The reason for the occurrence of boundary layers and their role in high 
Reynolds number flows have been considered in Section 8.3. Now that 
we have considered (in Chapter 10) the flow external to the boundary 
layers, we need to look in more detail at the boundary layers themselves. 
This is the first purpose of this chapter. However, wakes and j e t ~ t h e r  
regions where viscous forces are significant even at high Reynolds 
number-involve similar ideas and equations, and so we extend the 
discussion to include them. 

The fact that flow outside the boundary layers is irrotational (Section 
10.3) provides another way of viewing the process of boundary layer 
formation. Fluid particles can acquire vorticity only by viscous diffusion 
(i.e. through the action of the term vv2m in eqn (6.27)). The action of 
viscosity comes in at the boundary through the need to satisfy the no-slip 
condition. As a result vorticity is introduced into the flow at the 
boundary, and then diffuses away from it. The boundary layer can be 
defined as the region of appreciable vorticity. The boundary layer is long 
and thin (L >> 6) when the fluid travels a long distance downstream 
during the time that the vorticity diffuses only a small distance away from 
the boundary. This happens when the Reynolds number is large. 

High Reynolds number wakes and jets are regions into which vorticity 
has been advected; the vorticity was introduced upstream where the fluid 
was close to boundaries-the walls of the obstacle producing the wake or 
of the orifice through which the jet emerges. These flow features are long 
and thin for just the same reason as a boundary layer is. 

11.2 The boundary layer approximation [23] 

Because of the difference in length scales in different directions, certain 
terms in the equations of motion play a negligible part in the dynamics of 
boundary layers. We now see in a systematic way how this can be used to 
formulate an appropriate approximation to the equations. This will 
provide further justification for the ideas introduced in Section 8.3. Also, 
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the resulting equations can sometimes be solved when the exact 
equations cannot. We shall be looking (Sections 11.4 and 11.6) at a 
couple of solutions both for their own interest and as our examples of the 
mathematical methods used for fully non-linear problems. 

From the outset we confine attention to steady, two-dimensional 
boundary layers-a severe restriction from a practical point of view, but 
one that still allows us to see the general principles involved. We suppose 
that the boundary layer is forming on a flat wall (with the x-coordinate in 
the flow direction and y normal to the wall). A free-stream velocity 
outside the boundary layer is prescribed as a function of x. This could be 
achieved by making the wall one side of a channel of variable width as in 
Fig. 11.1 (with the channel width always large compared to the boundary 
layer thickness). In fact, however, it makes negligible difference if the 
surface is curved, so long as there are no sharp corners-more precisely, 
so long as the radius of curvature of the surface is everywhere large 
compared to the boundary layer thickness. Thus, the prescribed free- 
steam velocity could be a solution of Euler's equation for flow past an 
obstacle (x then being a curvilinear coordinate in the surface). 

We denote the free-stream velocity by uo and the pressure associated 
with it by po. 

We take the boundary layer to have length scales L and 6 in the x- 
and y-directions, as in Section 8.3. We may expect that the velocity scales 
will also be different in different directions and we denote the scales of u 
and v by U and V.  Similarly the order of magnitude of the pressure 
differences across the boundary layer in the y-direction may not be the 
same as the order of magnitude of the imposed pressure differences 
outside the boundary layer; we denote the scale of the former by A and 
the scale of the latter by II. We now consider each of the equations in 
turn, labelling the terms with their orders of magnitude. 

L 
FIG. 11.1 Boundary layer on flat wall of channel: definition sketch. 
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The continuity equation is 

The two terms must be of the same order of magnitude; fluid entering or 
leaving the boundary layer at its outer edges must be associated with 
variations in the amount of fluid travelling downstream within the 
boundary layer. Hence, 

the velocity component normal to the wall is small compared with the 
rate of downstream flow when the boundary layer is thin. 

The x-component of the Navier-Stokes equation is 

The second expression for the order of magnitude of v d u l d y  has been 
written using relationship (11.2). The two parts of the inertia term are 
comparable with one another, the smallness of V / U  compensating for the 
more rapid variation of u with y than with x. The two parts of the viscous 
term are however of different sizes when 6 / L  is small, and v d2u/dx2 
may be neglected. 

The y-component of the Navier-Stokes equation is 

In both eqn (11.3) and eqn (11.4) the pressure term will be of the same 
order of magnitude as the largest of the other terms. Hence, 

and so 
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The pressure differences across the boundary layer are much smaller than 
those in the x-direction. Hence, at any value of y the difference between 
( l l p )  aplax and ( l lp )  dpo/dx is much smaller than the significant terms 
in eqn (11.3) and we may replace the former by the latter, giving 

au au 1 dpo a2u u-+v-= --- + Y -  (11.8) 
ax ay p d x  ay2' 

Outside the boundary layer there is no variation with y and 

a result which could also be obtained from Bernoulli's equation. Hence 

This equation together with 

constitute the boundary layer equations-two equations in the two 
variables u and v. 

l l .3  Classilication of boundary layers 

Solution of (11.10) and (11.11) requires uo(x) to be specified, both to give 
the third term in (11.10) and as a boundary condition for integration with 
respect to y.  This is why the solution of Euler's equation for the 
particular configuration is needed before the boundary layer can be 
analysed. 

Obviously, many different distributions of u,(x) can arise. In the next 
section we shall consider the simplest case of all-when uo is constant. 
We shall not consider any other case quantitatively, but some general 
remarks may be made. A useful broad classification is given by the sign 
of duo/dx or, equivalently through eqn (11.9), the sign of dpo/dr. When 

(the external flow is accelerating as the pressure decreases) one talks of a 
boundary layer in a favourable pressure gradient. When 

(the external flow is decelerating as the pressure rises) one talks of an 
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adverse pressure gradient. One can, of course, have regions of each type 
of pressure gradient within a given flow-indeed, this is usually the case 
for the boundary layer on an obstacle. 

Boundary layers in favourable pressure gradients are relatively thin. In 
a region of strong enough pressure gradient the boundary layer thickness 
can actually decrease with distance downstream; the effect of the pressure 
gradient more than counteracts the viscous spreading process (explained 
qualitatively in Section 11.1 and to be seen quantitatively in Section 
11.4). We shall also be noting in Section 18.2 that instability, leading to 
transition to turbulence, is delayed by a favourable pressure gradient. 
Such a pressure gradient does not, however, introduce flow phenomena 
qualitatively different from those occurring in boundary layers with zero 
pressure gradient. 

The effects of an adverse pressure gradient are in the first place just 
the reverse of those just described. Much more significantly, however, a 
boundary layer in such a pressure gradient is prone to the phenomenon 
of separation. We shall discuss the nature and implications of this in 
Chapter 12 and particularly Sections 12.4 and 12.5. It should be noted 
here, however, that the effect of separation can be to modify the solution 
of Euler's equation for the region outside the boundary layer. Conse- 
quently, uo(x) may differ from the form that one initially assumes. 

11.4 Zero pressure gradient solution 

The simplest, and in a sense most fundamental, case is the one where the 
pressure gradient is zero. Equivalently, uo is constant; we consider the 
boundary layer beneath a uniform flow. Such a boundary layer is readily 
observed on a thin flat plate set up parallel to the free-stream; one wall of 
an empty wind-tunnel or water-channel is sometimes used. 

The equations for this case are 

with boundary conditions 
u = v = O  at y = O  

We look for a solution of the form 
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where A  is a function of x. That the solution should be of this form is an 
assumption. It corresponds to the velocity profile having the same shape 
at all values of x ,  although with a digerent scale in the y-direction, and is 
thus physically plausible. A is directly proportional to the boundary layer 
thickness, but it is convenient to define it slightly differently from 6. 

Equation (11.15) can be satisfied by introducing a stream function yt 
such that 

u = dqldy, v = -dyt/dx (11.18) 
as in Section 6.3. If we take 

then (11.18) gives (11.17) as required with 

g = f l  
where the prime indicates differentiation with respect to 

The second of equations (11.18) also gives 

and further differentiation leads to 
au U ~ Y ~ " ~ A  au  _-. u0fM -- d2u uOfw =---• -- -- (11.23) 
dx A  dx'  dy A  ' dy2 A2 ' 

Substitution into eqn (11.14) then gives 
u i  dA -- ff"+-f'"=O. YUo 
A d x  A2 

If the solution is of the assumed form this must reduce to a total 
differential equation in f  as a function of q ;  i.e. the two coefficients must 
have the same dependence on x, so that this cancels out: 

and so 

It is convenient to choose the constant of proportionality and the origin 
of x so that 

It is found experimentally that this choice of the origin of x corresponds 
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fairly closely to the leading edge of a flat plate set up in an otherwise 
unobstructed flow. Equation (11.27) is essentially the same result as 
eqn (8.13). 

Equation (1 1.24) now becomes 

The boundary conditions transform to 

The solution of this total differential equation has to be obtained 
numerically [22,23]. The resulting variation of f '  with q,  and so the 
velocity profile is shown in Fig. 11.2. This curve is known as the Blasius 
profile. 

It has the property that 
f t=0 .99  when q=4.99. (11.30) 

The boundary layer thickness as previously defined (Section 8.3) is thus 

Other ways of writing this are 
6 / x  = 4.99 ~ e ; ' ~  and Re, = 4.99 ~ e : ' ~  

(Re, = u0x/v; Rea = uo 6 /v). The boundary layer thickness is small when 
the Reynolds number is large, as expected. This is, of course, a necessary 
condition for the theory to apply. Also Re, is large when Re, is large; 
there is no ambiguity in talking about large Reynolds number. 

Figure 11.2 includes experimental observations for several values of 
Re, (from two separate experiments). The agreement with the theoretical 
profile is good, providing support for the various approximations and 
assumptions made in the course of the theory. The experimental results 
have been scaled to the coordinates q(= y(u0/vx)'") and f I(= ulu,). One 
sees the way in which the profile maintains its shape with distance 
downstream although the boundary layer thickness is changing-as 
assumed in eqn (1 1.17). 

At higher values of the Reynolds number, the Blasius profile is 
unstable and the boundary layer becomes turbulent. The transition 
process will be described in Chapter 18, and the nature of the turbulent 
boundary layer in Chapter 21. The instability depends on Res, which, as 
we see from eqn (11.32), increases with Re,. Thus, any zero pressure 
gradient boundary layer undergoes transition if it extends far enough 
downstream. However, provided that the disturbance level is not too 




