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BOUNDARY LAYERS, WAKES,
AND JETS

11.1 Viscous regions in high Reynolds number flow

The reason for the occurrence of boundary layers and their role in high
Reynolds number flows have been considered in Section 8.3. Now that
we have considered (in Chapter 10) the flow external to the boundary
layers we need to look in more detail at the boundary layers themselves.
This is the first purpose of this chapter. However, wakes and jets—other
regions where viscous forces are significant even at high Reynolds
number—involve similar ideas and equations, and so we extend the
discussion to include them.

The fact that flow outside the boundary
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formation. Fluid particles can acquire vorticity only by viscous diffusion
(i.e. through the action of the term vV’ in eqn (6.27)). The action of
viscosity comes in at the boundary through the need to satisfy the no-slip
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boundary, and then diffuses away from it. The boundary layer can be
defined as the region of appreciable vorticity. The boundary layer is long
and thin (L>> 8) when the fluid travels a long distance downstream
during the time that the vorticity diffuses only a small distance away from
the boundary. This happens when the Reynolds number is large.

High Reynolds number wakes and jets are regions into which vorticity
has been advected; the vorticity was introduced upstream where the fluid

:
was close to boundaries—the walls of the obstacle producmg the wake or

of the orifice through which the jet emerges. These flow features are long
and thin for just the same reason as a boundary layer is.

11.2 The boundary layer approximation [23]

Because of the difference in length scales in different directions, certain
terms in the equations of motion play a negligible part in the dynamics of
boundary layers. We now see in a systematic way how this can be used to
formulate an appropriate approximation to the equations. This will
provide further justification for the ideas introduced in Section 8.3. Also,



124 BOUNDARY LAYERS, WAKES, AND JETS

the resulting equations can sometimes be solved when the exact
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couple of solutions both for their own interest and as our examples of the
mathematical methods used for fully non-linear problems.
From the outset we confine attention to steady, two-dimensional
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one that still allows us to see the general principles involved. We suppose
that the boundary layer is forming on a flat wall (with the x-coordinate in
the flow direction and y normal to the wall). A free-stream velocity
outside the boundary layer is prescribed as a function of x. This could be
achieved by making the wall one side of a channel of variable width as in
Fig. 11.1 (with the channel width always large compared to the boundary
layer thickness). In fact, however, it makes negligible difference if the
surface is curved, so long as there are no sharp corners—more precisely,
SO lOIlg as Ule I'dUlllb OI curvature OI lﬂC bunace lb ch‘:ry‘v‘vncrc ldIgC
compared to the boundary layer thickness. Thus, the prescribed free-
steam velocity could be a solution of Euler’s equation for flow past an
obstacle (x then being a curvilinear coordinate in the surface).

We denote the II'CC stream VClOLlly Dy Ug and the prcnurt: Clate
with it by p,.

We take the boundary layer to have length scales L and 6 in the x-
and y-directions, as in Section 8.3. We may expect that the velocity scales
will also be different in different directions and we denote the scales of u
and v by U and V. Similarly the order of magnitude of the pressure
differences across the boundary layer in the y-direction may not be the
same as the order of magnitude of the imposed pressure differences
outside the boundary layer; we denote the scale of the former by A and
the scale of the latter by II. We now consider each of the equations in
turn, labelling the terms with their orders of magnitude.
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Fic. 11.1 Boundary layer on flat wall of channel: definition sketch.
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The continuity equation is
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x5y 0 (11.1)
v vy
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The two terms must be of the same order of magnitude; fluid entering or
leaving the boundary layer at its outer edges must be associated with
variations in the amount of fluid travelling downstream within the
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boundary layer. Hence,
V ~US/L; (11.2)

the velocity component normal to the wall is small compared with the
rate of downstream flow when the boundary layer is thin.

The x-component of the Navier—Stokes equation is
du du 1p u  Ju

U—+ v— =———+VS+v—
ox 3y pdx ox*  ay?
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The second expression for the order of magnitude of v du/dy has been
written using relationship (11.2). The two parts of the inertia term are
comparable with one another, the smallness of V /U compensating for the
more rapid variation of u with y than with x. The two parts of the viscous
term are however of different sizes when 8/L is small, and v 8*u/3dx?

may be neglected.
The y-component of the Navier—Stokes equation is

(11.3)

u— + v =——=+4 Vv +v— (11.4)
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In both eqn (11.3) and eqn (11.4) the pressure term will be of the same
order of magnitude as the largest of the other terms. Hence,

II/pL ~ U*/L~vU/§? (11.5)
Alpd~ U?8/L?~ vU/LS (11.6)

AJTI~ 8%/ L2 (11.7)
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The pressure differences across the boundary layer are much smaller than
those in the x-direction. Hence, at any value of y the difference between
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(1/p) dp/3x and (1/p) dpy/dx is much smaller than the significant terms
in eqn (11.3) and we may replace the former by the latter, giving

Ou  du_ 1ldpy Ju
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Outside the boundary layer there is no variation with y and
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a result which could also be obtained from Bernoulli’s equation. Hence

3 &
LU LY (11.10)
3x  dy dx  9y?

This equation together with

u, X _g (11.11)

ox g9y

constitute the boundary layer equations—two equations in the two
variables u and v.

11.3 Classification of boundary layers

Solution of (11.10) and (11.11) requires uy(x) to be specified, both to give
the third term in (11.10) and as a boundary condition for integration with
respect to y. This is why the solution of Euler’s equation for the
particular configuration is needed before the boundary layer can be
analysed.

Obviously, many different distributions of uy(x) can arise. In the next
section we shall consider the simplest case of all—when u, is constant.
We shall not consider any other case quantitatively, but some general
remarks may be made. A useful broad classification is given by the sign
of duy/dx or, equivalently through eqn (11.9), the sign of dp,/dx. When

duo/dx >0; dpe/dx <0 (11.12)

(the external flow is accelerating as the pressure decreases) one talks of a
boundary layer in a favourable pressure gradient. When

/ ~ N (11 12\
o/ YA — U \11.19)

(the external flow is decelerating as the pressure rises) one talks of an
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adverse pressure gradient. One can, of course, have regions of each type
of nressure gradient within a mvpn flow—indeed. this is usua]lv the case

PAvoewav miOSSawILT VVataalll v- Nraa aAa8S ANy

for the boundary layer on an obstacle.
Boundary layers in favourable pressure gradients are relatively thin. In
a region of strong enough pressure gradient the boundary layer thickness
a

can actually decrease with distance downstream; the effect of the pr ressure
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qualitatively in Section 11.1 and to be seen quantitatively in Sectlon
11.4). We shall also be noting in Section 18.2 that instability, leading to
transition to turbulence, is delayed by a favourable pressure gradient.
Such a pressurc gradicur does not, however, introduce flow pucnomena
qualitatively different from those occurring in boundary layers with zero
pressure gradient.

The effects of an adverse pressure gradient are in the first place just
the reverse of those just described. Much more significantly, however, a
boundary layer in such a pressure gradient is prone to the phenomenon
of separation. We shall discuss the nature and implications of this in
Chapter 12 and particularly Sections 12.4 and 12.5. It should be noted
here NOWCEVCT, that the effect of bcparauuu can be to 1uuuuy the solution

of Euler’s equation for the region outside the boundary layer. Conse-
quently, uy(x) may differ from the form that one initially assumes.

I"

The simplest, and in a sense most fundamental, case is the one where the
pressure gradient is zero. Equivalently, u, is constant; we consider the
boundary layer beneath a uniform flow. Such a boundary layer is readily
observed on a thin flat plate set up parallel to the free-stream; one wall of
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an empty wind-tunnel or water-channel is sometimes used.
The equations for this case are

-~ -~ ~2
u =y 2 (11.14)
ox 3y  9y?
ou Jv
Zir"=0 11.15
ox Jdy ( )

—u; as y—>» (11.16)

u=uog(y/A) (11.17)
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where A is a function of x. That the solution should be of this form is an
aeeumnhnn_ It corresnonds to the velocitv nrofile havine the same shane
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at all values of x, although with a dlfferent scale in the y-direction, and is
thus physically plausible. A is directly proportional to the boundary layer
thickness, but it is convenient to define it slightly differently from §.

Equation (11.15) can be satisfied by introducing a stream function y
such that
u=290y/dy, v=-0y/ox (11.18)
as in Section 6.3. If we take
P =uAf(y/A) (11.19)
then (11.18) gives (11.17) as required with
g=f' (11.20)
where the prime indicates differentiation with respect to
n=y/A. (11.21)
The second of equations (11.18) also gives
v=uy(—f +yf'/A)dA/dx (11.22)
and further differentiation leads to
a " d A a ” 82 "
Su_ oy 38 Ou_oft, T4 _tof (11.23)
ox A dx gy A ay° A* ) '
Substitution into eqn (11.14) then gives
2
ugdA Vidg
——ff"+ "=0(. 11.24

If the solution is of the assumed form this must reduce to a total
differential equation in f as a function of 7; i.e. the two coefficients must
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und/\ v,
=g (11.25)
and so
A?*x vx/ugy + const. (11.26)

It is convenient to choose the constant of proportionality and the origin
of x so that

11 D7\
\LL.LI}
It is found experimentally that this choice of the origin of x corresponds
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fairly closely to the leading edge of a flat plate set up in an otherwise
unobstructed flow. Equation (11.27) is essentially the same result as
eqn (8.13).
Equation (11.24) now becomes
ff"+2f"=0. (11.28)

The boundary conditions transform to

f=f"=0 at n=0

F1 a5 posoo (11.29)

The solution of this total differential equation has to be obtained
numerically [22,23]. The resulting variation of f' with n, and so the
velocity profile is shown in Fig. 11.2. This curve is known as the Blasius

profile.
It has the property that
f'=0.99 when 7n=4.99 (11.30)
The boundary layer thickness as previously defined (Section 8.3) is thus
8 = 4.99(vx/ug)"? (11.31)
Other ways of writing this are
8/x=4.99Re;?> and Re;=4.99 Rel? (11.32)

(Re, = upx/v; Res = uy 6/v). The boundary layer thickness is small when
the Reynolds number is large, as expected. This is, of course, a necessary
condition for the theory to apply. Also Res is large when Re, is large;
there is no ambiguity in talking about large Reynolds number.

Figure 11.2 includes experimental observations for several values of
Re, (from two separate experiments). The agreement with the theoretical
profile is good, providing support for the various approximations and
assumptions made in the course of the theory. The experimental resuits
have been scaled to the coordinates n(=y(uo/vx)'?) and f'(= u/u,). One
sees the way in which the profile maintains its shape with distance
downstream although the boundary layer thickness is changing—as
assumed in eqn (11.17).

At higher values of the Reynolds number, the Blasius profile is
unstable and the boundary layer becomes turbulent. The transition
process will be described in Chapter 18, and the nature of the turbulent
boundary layer in Chapter 21. The instability depends on Re,, which, as
we see from eqn (11.32), increases with Re,. Thus, any zero pressure
gradient boundary layer undergoes transition if it extends far enough
downstream. However, provided that the disturbance level is not too
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