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They correlated the ratio of the settling velocity to the terminal velocity, Equa-
tion 4.68, with the volume fraction of the continuous phase. They also accounted
for wall effects. For Reynolds numbers based on the terminal velocity between
200 and 500, the factor f works out to be

= in_ﬁn Tmm:

where k = 4.45Re™! and Re = v,D/v.

Wen and Yu (1966) also conducted a series of fluidization experiments to
infer the drag force on particles in dense mixtures. They were looking for a
correction to the equation for drag force in the form

Fp = g(ac)3mu Df, (u—v) (4.82)

where f, is the drag factor for an isolated vparticle. Wen and Yu used the
Schiller-Naumann correlation, Equation 4.51, in their analysis with the relative
Reynolds number based on the superficial velocity. They were able to correlate
their data and those of previous investigators (including Richardson and Zaki)
by setting
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The contribution of their analysis is that they included Reynolds number effects
on the terminal velocity and, in so doing, were able to develop an empirical
correlation over the entire Reynolds number regime. The drag factor f now
becomes

f= D“nlunw-x.o Aﬁmﬁu
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Wen and Yu (1966) also claimed that their correlation provides the same
results as Ergun’s for volume fractions corresponding to minimum fluidization.
This claim is somewhat dubious, however, since g(a.) is so sensitive to a. near
minimum fluidization.

More recently, Di Felice (1994) found by analysis of various data available
in the literature that

f=fse? (4.85)

where [ is a function of the relative Reynolds number. In the low Reynolds
number regime the value of § approaches 3.65 based on the data of Richardson
and Zaki (1954). At high Reynolds numbers § approaches 3.7 from the data of
Wen and Yu (1966) and others. In the intermediate range of Reynolds numbers
[ goes through a minimum value of approximately 3 for Reynolds numbers in
the range 20 to 80. Di Felice recommends the following empirical correlation

for 3,11
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Figure 4.11: Coordinate system for sphere accelerating in a fluid.
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B=3.7—0.65exp LVNM&I@?S (4.86)

for relative Reynolds numbers from 10~2 to 104.

The present state of knowledge on the drag of particles in a cloud is still
very primitive. A better understanding may be forthcoming through the current
development of numerical models for arrays of particles (Dasgupta et al., 1994;
Feng et al., 1994; Hu, 1996). However, the correlation proposed by Di Felice
(1994) is H.moomﬁbmuama for the present time.

4.3.4 Unsteady forces

The forces due to acceleration of the relative velocity can be divided into two
ﬁmhﬂw the virtual mass effect and the Basset force. The virtual mass effect
relates to the force required to accelerate the surrounding fluid. The Basset
term describes the force due to the lagging boundary layer development with
changing relative velocity.

Virtual or apparent mass effect

When a body is accelerated through a fluid, there is a corresponding acceleration.

of the fluid which is at the expense of work done by the body. This additional
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work relates to the SHEE mass effect.

Consider a sphere in a fluid as shown in Figure 4.11. The total kinetic energy
of the fluid surrounding the sphere is

1 2
KE=p, \(\ w2dV (4.87)

where the imtegra] is taken over all the fuid. B i agsumed that the fluid s
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derivative of a potential function

u=Ve (4.88)
The continuity equation in terms of the potential function is
Voa=V"¢ =0 (4.89)

The kinetic energy of the fluid can be expressed in terms of the potential function
as

KE = WP \ Vo VédV (4.90)
Vv

However, because of the continuity equation, this integral can be written as

1
KE=3p. [ [96-Vo+ovidldV = 50, [ V- (@Vov (49
v 1%
Using the divergence theorem, this volume integral can be expressed as a mzamm.ﬁm
integral over the sphere (the sphere surface is the boundary “enclosing” the fluid)

= B \ pVp-n'dA
cs

- (4.92)

KE=3p. [ V- (699)d
2P [,

where n’ is the unit outward normal vector from the fluid.
The potential function for a sphere moving with a relative velocity U through

a fluid is |
Ua

272
where the angle 8 is defined in the figure and a is the radius of the sphere. The
radial component of velocity is

costl (4.93)

b=-

Ud®
U= WW ﬂw cosd (4.94)

which on the surface of the sphere reduces to
ur = U cosf (4.95)
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direction. The dot product in Equation 4.92 becomes
do A
n' = —& - (-€&)=—-,==—-Ucosl
¥or or & - (=€) ar
where €, is the radial outward unit vector. Substituting the above expressions

for ¢ and the gradient of ¢ into the equation for kinetic energy of the fluid gives
P Foy

(4.96)
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where a?sinf2ndf is the element of surface area on the sphere. This equation
evaluates to

gz g irre2
KE = F‘\ cos?0sinfdf = Tpea U™ (4.98)
2 0 3
The werk rate required to change the kinetic energy is
dKFE
Fym = —— 4.99
UFum = (499)
whei¢ Fym is the “virtual mass” force. Thus
(4.100)
so the force is equal to
(4.101)

where M s is the mass of fluid 92&&8& 9\ Em mwrmam The acceleration of the

carrier fluid is the acceleration of a fluid element which is usually represented
by the material derivative of the velocity, DU/Dt. This force, Fym is the force

of the particle on the fluid so the drag force is in the opposite sense. In general
the relative acceleration of the fluid with respect to the particle acceleration is
u— v where  is the material derivative of the velocity, Du/Dt. If the fluid was
at rest, then the virtual mass force on the particle should be in the direction
opposite the particle acceleration. Thus the virtual mass force acting on the
particle is given by
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This force is sometimes called the apparent mass moanm @momc.mm it is equivalent
to adding a mass to the sphere. Analyses are available for shapes other than
spheres for which the form of the equation is the same but the mass of fluid
displaced is different.
Experiments for a sphere in simple harmonic motion (Odar & Hamilton,
1964) indicate that the virtual mass term also depends on the acceleration pa-

rameter which is defined as!?

(4.102)

u?

du
Sl
D dt

Ac =

wher 1. is the relative velocity. The acceleration parameter decreases as the
relative selocity decreases or the relative acceleration increases. They proposed
a coeficient to correct to the virtual mass term. Odar (1964) suggested the
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Figure 4.12: Impulsively accelerated flat plate.

following empirical equation for the coefficient, Cym, as a function of the accel-

eration parameter,'?
0.132

0.12 + Ac?
This correlation was developed from data using a sphere in simple harmonic
motion. Subsequent work by Odar (1966) demonstrated the validity of the
correlation for spheres dropping due to gravity in a tank of liquid. Further work
by Schoneborn (1975) showed the utility of the correlation for predicting the
fall velocity of particles in an tank of oscillating fluid.

Cy = B~ (4.103)

Basset force

In that the virtual mass force accounts for the form drag due to acceleration, the
Basset term accounts for the viscous effects. This term addresses the temporal
delay in boundary layer development as the relative velocity changes with time.
This term is sometimes called the “history” term.

The most direct approach to understanding the Basset force is to consider
an impulsively accelerated infinite flat plate shown in Figure 4.12. The equation
of motion for the fluid is

du 0%u

o tnm@

with the initial condition u(0,y) = 0 and the boundary conditions u(t,0) = ug
and u(t,co0) = 0 where ug is the velocity of the plate. Thus the plate is started
impulsively with a step change in velocity from 0 to up.

The solution to this equation is

(4.104)

u = ugerf(n) (4.105)

13 The expression Odar proposed approaches 0.5 as Ac — 0 which replaces the 0.5 factor in
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Figure 4.13: Stepwise impulsive acceleration of a flat plate.

where = .wl..wm or

u=28 [ Nan 4
gz L (4.1086)
The local shear stress is
= _ du 2ug dn HeUo
LT = e |y=0 = Yo = ——
% By v=0 = He oy = Vv =
or
e PeHcUo
L.ﬂ I"L T = — ﬁ.HDm
Nl ook (4.108)

Zoé.‘w assume that a general temporal variation in plate velocity can be broken
up into a series of step changes as shown in the Figure 4.13. At time 0 there
is a change Awug, at time ¢; a change Au; and so on. The cumnulative effect on
shear strzss would be_ o .

. batlD:o i Auq " Aug -]
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For = «ne step At’ the change in velocity would be m% At' so the above sum
can Lt = pressed as -

(4.100)
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where VAt represents the time interval from the initiation of the acceleration
to the present time; that is, from 0 to ¢. In the limit as At’ approaches zero and
NAt — t' the equation becomes

ot A ﬁ-*lu

I

v

s =
> T (4.110)
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Applying this same approach to the impulsive flow over a sphere at low
Reynolds number, Basset found that the drag force was equal to

ta-v
Fpesset = WUM/\J.'\QI_“\O I...Iﬂ&w.. TpHHMu
where, once again, 1 is the material derivative of the fluid velocity, Du/Dt.The
“historical” nature of this term is evident; the value of the Basset force depends
on the acceleration history up to the present time. This term is often difficult to
evaluate although important in many unsteady applications. According to the
calculations of Hjemfelt and Mockros (1966), the Basset term and virtual mass
term become insignificant for p./pg ~ 1073 if (o) pewD?)1/? > 6 where w is the
frequency of the oscillating flow. Thus the Basset term would not be important
for a 10-pum particle in a stream oscillating at less than 700 Hz (Rudinger, 1980).
Voir and Michaelides (1994) have also shown that the Basset term is negligible
for oscillatory velocity fields if p./py < 0.002 and w7y < 0.5.

As with the virtual mass term, an empirical coefficient, Cg, has been pro-
posed by Odar and Hamilton (1964) to account for the effect of acceleration on
the Basset term. The coefficient as given by Odar (1966) gt

0.52
(1+ Ac)?

Cp = 0.48 + (4.113)

Reeks and McKee (1984) have shown that the Basset term has to be modified
to include the case when there is an initial velocity. The term becomes

3 L u—v
Fpasset = mcmz\g ﬁ i ﬂ&ﬁ\ + { TP.:.NC
where (u— V), is the initial velocity difference. Mei et al. (1991) developed
a numerical model for stationary flow over a sphere with small free-stream ve-
locity fluctuations. They found that the unsteady Stokes equation does not
describe the character of unsteady drag at low frequencies and suggested that
this effect may explain the observations of McKee and Reeks that the initial
velocity difference has a finite contribution to the long-term particle diffusivity

in a turbulent flow.

4.3.5 Basset-Boussinesqg-Oseen equation

Equating the sum of the steady-state drag force, the pressure (buoyancy) force,
virtual mass force, the Basset force and the body force to the mass times the
acceleration of an isolated droplet or particle yields the Basset-Boussinesg-Oseen

I
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(£574C) equation for particle or droplet motion.*
m¥ = 3rp D(u—v) + Va(-Vp+V 7) + £ (0 - V)
(4.115)
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A rigorous derivation of the equation of motion of small particles in nonuniform
.moﬁm has been performed by Maxey and Riley (1983). The equation they derive
is essentially the same as the one above except for extra terms due to the
nonuniformity of the velocity field and the additional term in the Basset force.
If nonuniformity effects are included the Faxen force appears in the steady-state
drag term (Equation 4.46). Also the virtual mass term becomes

- (4.116)

and an additional term appears in the Basset force. For the sake of mmEﬁmnm&s
the terms due to flow field nonuniformity will not be included here.

. Dividing through Equation 4.115 by the droplet mass and rearranging the
virtual mass term gives

(1435) & = (- + ECTp+9m) + 450
Pa 2 py
(4.117)

i
9 (e \* 1 Loty (u—v)
+ 2m mbnv VTV _” 0 Vi—¢ dt’ + t Hi T8
The pressure gradient and shear stress term can be related to the fluid accelera-

Mom and force due to gravity from the Navier-Stokes equation for the conveying
uid

NP+ V- Tg=Pomr — 0.8

s0 2he owEEmm&ou of E.m pressure gradient and shear stress term can be com-
bicss with the fluid acceleration in the virtual mass term to yield the following
forr: of the BBO equation!®
LecYdv _ 1 .
mu+wmwvﬂw\.lﬂﬁCI<v+wme

(4.118)

9 (£ 7, b -y do—vilg
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For flows, such as gas-particle flows, where the ratio of the continuous phase

density to the droplet material density is very small (~ 10~2), the BBO equation
can be justifiably simplified to

av 1
=—(u-v)+g

it (4.119)

15The Faxen force is not included here.
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