TABLE 6-4 Additional Frictional Loss for Turbulent Flow through Fittings and Valves ${ }^{\text {a }}$

Type of fitting or valve	Additional friction loss, equivalent no. of velocity heads, K
45° ell, standard ${ }^{\text {b,c,d,ef }}$	0.35
45° ell, long radius ${ }^{c}$	0.2
$90^{\circ} \mathrm{ell}$, standard $^{\text {b,ce.efg. } h}$	0.75
Long radius ${ }^{\text {b,c,de }}$	0.45
Square or miter ${ }^{h}$	1.3
180° bend, close return ${ }^{\text {b,cee }}$	1.5
Tee, standard, along run, branch blanked off ${ }^{e}$	0.4
Used as ell, entering run ${ }^{\text {g } i}$	1.0
Used as ell, entering branch ${ }^{\text {c,g, }}{ }^{\text {a }}$	1.0
Branching flow ${ }^{i, j, k}$	$1{ }^{l}$
Coupling ${ }^{\text {c,e }}$	0.04
Union ${ }^{\text {e }}$	0.04
Gate valve, ${ }^{\text {b,e,m}}$ open	0.17
$3 / 4$ open	0.9
$1 / 2$ open	4.5
$1 / 4$ open	24.0
Diaphragm valve, open	2.3
$3 / 4$ open	2.6
$1 / 2$ open	4.3
$1 / 4$ open	21.0
Globe valve, ${ }^{e, m}$	
Bevel seat, open	6.0
$1 / 2$ open	9.5
Composition seat, open	6.0
$1 / 2$ open	8.5
Plug disk, open	9.0
$3 / 4$ open	13.0
$1 / 2$ open	36.0
1/4 open	112.0
Angle valve ${ }^{\text {b,e }}$ open	2.0
Y or blowoff valve, ${ }^{\text {b,m }}$ open	3.0
Plug cock	
$\theta=5^{\circ}$	0.05
$\theta=10^{\circ}$	0.29
$\theta=20^{\circ}$	1.56
$\theta=40^{\circ}$	17.3
$\theta=60^{\circ}$	206.0
Butterfly valve	
$\theta=5^{\circ}$	0.24
$\theta=10^{\circ}$	0.52
$\theta=20^{\circ}$	1.54
$\theta=40^{\circ}$	10.8
$\theta=60^{\circ}$	118.0
Check valve, ${ }^{\text {,e,m}}$ swing	2.0
Disk	10.0
Ball	70.0
Foot valve ${ }^{e}$	15.0
Water meter, ${ }^{\text {, }}$ disk	7.0
Piston	15.0
Rotary (star-shaped disk)	10.0
Turbine-wheel	6.0

${ }^{a}$ Lapple, Chem. Eng., 56(5), 96-104 (1949), general survey reference ${ }^{b}$ "Flow of Fluids through Valves, Fittings, and Pipe," Tech. Pap. 410, Crane Co., 1969.
${ }^{c}$ Freeman, Experiments upon the Flow of Water in Pipes and Pipe Fittings, American Society of Mechanical Engineers, New York, 1941
${ }^{d}$ Giesecke, J. Am. Soc. Heat. Vent. Eng., 32, 461 (1926).
${ }^{\text {e}}$ Pipe Friction Manual, 3d ed., Hydraulic Institute, New York, 1961
Ito, J. Basic Eng., 82, 131-143 (1960).
${ }^{5}$ Giesecke and Badgett, Heat. Piping Air Cond., 4(6), 443-447 (1932).
${ }^{h}$ Schoder and Dawson, Hydraulics, 2d ed., McGraw-Hill, New York, 1934 p. 213.
${ }^{i}$ Hoopes, Isakoff, Clarke, and Drew, Chem. Eng. Prog., 44, 691-696 (1948).
${ }^{j}$ Gilman, Heat. Piping Air Cond., 27(4), 141-147 (1955)
${ }^{k}$ McNown, Proc. Am. Soc. Civ. Eng., 79, Separate 258, 1-22 (1953); discussion, ibid., 80, Separate 396, 19-45 (1954). For the effect of branch spacing on junction losses in dividing flow, see Hecker, Nystrom, and Qureshi, Proc. Am. Soc. Civ. Eng., J. Hydraul. Div., 103(HY3), 265-279 (1977).
${ }^{l}$ This is pressure drop (including friction loss) between run and branch, based on velocity in the mainstream before branching. Actual value depends on the flow split, ranging from 0.5 to 1.3 if mainstream enters run and from 0.7 to 1.5 if mainstream enters branch.
${ }^{m}$ Lansford, Loss of Head in Flow of Fluids through Various Types of 11⁄-in. Valves, Univ. Eng. Exp. Sta. Bull. Ser. 340, 1943.

TABLE 6-5 Additional Frictional Loss for Laminar Flow through Fittings and Valves

Type of fitting or valve	Additional frictional loss expressed as K			
	$\mathrm{Re}=1,000$	500	100	50
90° ell, short radius	0.9	1.0	7.5	16
Gate valve	1.2	1.7	9.9	24
Globe valve, composition disk	11	12	20	30
Plug	12	14	19	27
Angle valve	8	8.5	11	19
Check valve, swing	4	4.5	17	55

Check valve, swin
source: From curves by Kittredge and Rowley, Trans. Am. Soc. Mech. Eng., 79, 1759-1766 (1957).

The correction C_{o} (Fig. 6-14d) accounts for the extra losses due to developing flow in the outlet tangent of the pipe, of length L_{o}. The total loss for the bend plus outlet pipe includes the bend loss K plus the straight pipe frictional loss in the outlet pipe $4 f L_{o} / D$. Note that $C_{o}=1$ for L_{o} / D greater than the termination of the curves on Fig. $6-14 d$, which indicate the distance at which fully developed flow in the outlet pipe is reached. Finally, the roughness correction is

$$
\begin{equation*}
C_{f}=\frac{f_{\text {rough }}}{f_{\text {smooth }}} \tag{6-99}
\end{equation*}
$$

where $f_{\text {rough }}$ is the friction factor for a pipe of diameter D with the roughness of the bend, at the bend inlet Reynolds number. Similarly, $f_{\text {smooth }}$ is the friction factor for smooth pipe. For Re $>10^{6}$ and $r / D \geq 1$, use the value of C_{f} for $\mathrm{Re}=10^{6}$.

Example 6: Losses with Fittings and Valves It is desired to calculate the liquid level in the vessel shown in Fig. 6-15 required to produce a discharge velocity of $2 \mathrm{~m} / \mathrm{s}$. The fluid is water at $20^{\circ} \mathrm{C}$ with $\rho=1,000 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=$ $0.001 \mathrm{~Pa} \cdot \mathrm{~s}$, and the butterfly valve is at $\theta=10^{\circ}$. The pipe is 2 -in Schedule 40 , with an inner diameter of 0.0525 m . The pipe roughness is 0.046 mm . Assuming the flow is turbulent and taking the velocity profile factor $\alpha=1$, the engineering Bernoulli equation Eq. (6-16), written between surfaces 1 and 2, where the pressures are both atmospheric and the fluid velocities are 0 and $V=2 \mathrm{~m} / \mathrm{s}$, respectively, and there is no shaft work, simplifies to

$$
g Z=\frac{V^{2}}{2}+l_{v}
$$

Contributing to l_{v} are losses for the entrance to the pipe, the three sections of straight pipe, the butterfly valve, and the 90° bend. Note that no exit loss is used because the discharged jet is outside the control volume. Instead, the $V^{2} / 2$ term accounts for the kinetic energy of the discharging stream. The Reynolds number in the pipe is

$$
\operatorname{Re}=\frac{D V \rho}{\mu}=\frac{0.0525 \times 2 \times 1000}{0.001}=1.05 \times 10^{5}
$$

From Fig. 6-9 or Eq. (6-38), at $\epsilon / D=0.046 \times 10^{-3} / 0.0525=0.00088$, the friction factor is about 0.0054 . The straight pipe losses are then

$$
\begin{aligned}
l_{v(\mathrm{sp})} & =\left(\frac{4 f L}{D}\right) \frac{V^{2}}{2} \\
& =\left(\frac{4 \times 0.0054 \times(1+1+1)}{0.0525}\right) \frac{V^{2}}{2} \\
& =1.23 \frac{V^{2}}{2}
\end{aligned}
$$

The losses from Table 6-4 in terms of velocity heads K are $K=0.5$ for the sudden contraction and $K=0.52$ for the butterfly valve. For the 90° standard radius (r / D $=1$), the table gives $K=0.75$. The method of Eq. (6-94), using Fig. 6-14, gives

$$
\begin{aligned}
K & =K^{\circ} C_{\mathrm{Re}} C_{o} C_{f} \\
& =0.24 \times 1.24 \times 1.0 \times\left(\frac{0.0054}{0.0044}\right) \\
& =0.37
\end{aligned}
$$

This value is more accurate than the value in Table 6-4. The value $f_{\text {smooth }}=0.0044$ is obtainable either from Eq. (6-37) or Fig. 6-9.

The total losses are then

$$
l_{v}=(1.23+0.5+0.52+0.37) \frac{V^{2}}{2}=2.62 \frac{V^{2}}{2}
$$

