CHAPTER 5
Flow of Multiphase Mixtures

5.1. INTRODUCTION

The flow problems considered in previous chapters are concerned with homogeneous
fluids, either single phases or suspensions of fine particles whose settling velocities are
sufficiently low for the solids to be completely suspended in the fluid. Consideration is
now given to the far more complex problem of the flow of multiphase systems in which
the composition of the mixture may vary over the cross-section of the pipe or channel;
furthermore, the components may be moving at different velocities to give rise to the
phenomenon of “slip” between the phases.

Multiphase flow is important in many areas of chemical and process engineering and the
behaviour of the material will depend on the properties of the components, the flowrates
and the geometry of the system. In general, the complexity of the flow is so great that
design methods depend very much on an analysis of the behaviour of such systems
in practice and, only to a limited extent, on theoretical predictions. Some of the more
important systems to be considered are:

Mixtures of liquids with gas or vapour.

Liquids mixed with solid particles (“hydraulic transport”).

Gases carrying solid particles wholly or partly in suspension (“pneumatic transport”).
Multiphase systems containing solids, liquids and gases:

Mixed materials may be transported horizontally, vertically, or at an inclination to the
horizontal in pipes and, in the case of liquid-solid mixtures, in open channels. Although
there is some degree of common behaviour between the various systems, the range of
physical properties is so great that each different type of system must be considered
separately. Liquids may have densities up to three orders of magnitude greater than gases
but they do not exhibit any significant compressibility. Liquids themselves can range
from simple Newtonian liquids such as water, to non-Newtonian fluids with very high
apparent viscosities. These very large variations in density and viscosity are responsible
for the large differences in behaviour of solid-gas and solid-liquid mixtures which must,
in practice, be considered separately. For, all multiphase flow systems, however, it is
important to understand the nature of the interactions between the phases and how these
influence the flow patterns -— the ways in which the phases are distributed over the cross-
section of the pipe or duct. In design it is necessary to be able to predict pressure drop
which, usually, depends not only on the fiow pattern, but also on the relative velocity of
the phases; this siip velocity will influence the hold-up, the fraction of the pipe volume
which is occupied by a particular phase. It is important to note that, in the flow of a
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two-component mixture, the hold-up (or in situ concentration) of a component will differ
from that in the mixture discharged at the end of the pipe because, as a result of slip of
the phases relative to one another, their residence times in the pipeline will not be the
same. Special attention is therefore focused on three aspects of the flow of these complex
mixtures.

(1) The flow patterns.

(2) The hold-up of the individual phases and their relative velocities.

(3) The relationship between pressure gradient in a pipe and the flowrates and physical
properties of the phases.

The difference in density between the phases is important in determining flow pattern.
In gas-solid and gas-liquid mixtures, the gas will always be the lighter phase, and in
liquid-solid systems it will be usual for the liquid to be less dense than the solid. In
vertical upward flow, therefore, there will be a tendency for the lighter phase to rise more
quickly than the denser phase giving rise to a slip velocity. For a liquid-solid or gas-solid
system this slip velocity will be close to the terminal falling velocity of the particles. In a
liguid-gas system, the slip velocity will depend on the flow pattern in a complex way. In
all cases, there will be a net upwards force resulting in a transference of energy from the
faster to the slower moving phase, and a vertically downwards gravitational force will be
balanced by a vertically upwards drag force. There will be axial symmetry of flow.

In horizontal flow, the flow pattern will inevitably be more complex because the gravi-
tational force will act perpendicular to the pipe axis, the direction of flow, and will cause
the denser component to flow preferentially nearer the bottom of the pipe. Energy transfer
between the phases will again occur as a result of the difference in velocity, but the net
force will be horizontal and the suspension mechanism of the particles, or the dispersion
of the fluid will be a more complex process. In this case, the flow will not be symmetrical
about the pipe axis.

In practice, many other considerations will affect the design of an installation. For
example, wherever solid particles are present, there is the possibility of blockage of the
pipe and it is therefore important to operate under conditions where the probability of this
occurring is minimised. Solids may be abrasive and cause undue wear if the velocities
are too high or changes in direction of flow are too sudden. Choice of suitable materials
of construction and operating conditions is therefore important. In pneumatic transport,
electrostatic charging may take place and cause considerable increase in pressure gradient.

5.2. TWO-PHASE GAS (VAPOUR)-LIQUID FLOW
5.2.1. Introduction

Some of the important features of the flow of two-phase mixtures composed of a liquid
together with a gas or vapour are discussed in this section. There are many applications
in the chemical and process industries, ranging from the flow of mixtures of oil and gas
from well heads to flow of vapour-liquid mixtures in boilers and evaporators.

Because of the presence of the two phases, there are considerable complications in
describing and quantifying the nature of the flow compared with conditions with a single
phase. The lack of knowledge of the velocities at a point in the individual phases makes
it impossible to give any real picture of the velocity distribution. In most cases the gas
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phase, which may be flowing with a much greater velocity than the liquid, continuously
accelerates the liquid thus involving a transfer of energy. Either phase may be in streamline
or in turbulent flow, though the most important case is that in which both phases are
turbulent. The criterion for streamline or turbulent flow of a phase is whether the Reynolds
number for its flow at the same rate on its own is less or greater than 1000-2000. This
distinction is to some extent arbitrary in that injection of a gas into a liquid initially in
streamline flow may result in turbulence developing.

If there is no heat transfer to the flowing mixture, the mass rate of flow of each phase
will remain substantially constant, though the volumetric flowrates (and velocities) will
increase progressively as the gas expands with falling pressure. In a boiler or evaporator,
there will be a progressive vaporisation of the liquid leading to a decreased mass flowrate
of liquid and corresponding increase for the vapour, with the total mass rate of flow
remaining constant. The volumetric flowrate will increase very rapidly as a result of the
combined effects of falling pressure and increasing vapour/liquid ratio.

A gas-liquid mixture will have a lower density than the liquid alone. Therefore, if in a
U-tube one limb contains liquid and the other a liquid-gas mixture, the equilibrium height
in the second limb will be higher than in the first. If two-phase mixture is discharged
at a height less than the equilibrium height, a continuous flow of liquid will take place
from the first to the second limb, provided that a continuous feed of liquid and gas is
maintained. This principle is used in the design of the air lift pump described in Chapter 8.

Consideration will now be given to the various flow regimes which may exist and how
they may be represented on a “Flow Pattern Map”; to the calculation and prediction of
hold-up of the two phases during flow; and to the calculation of pressure gradients for
gas-liquid flow in pipes. In addition, when gas-liquid mixtures flow at high velocities
serious. erosion problems can arise and it is necessary for the designer to restrict flow
velocities to avoid serious damage to equipment.

A more detailed treatment of the subject is given by GOVIER and Aziz‘", by
CrisHOLM™® and by HEWITT®,

5.2.2. Flow regimes and flow patterns

Horizontal flow

The flow pattern is complex and is influenced by the diameter of the pipe, the physical
properties of the fluids and their flowrates. In general, as the velocities are increased and
as the gas-liquid ratio increases, changes will take place from “bubbie flow” through to
“mist flow” as shown in Figure 5.1'~7); the principal characteristics are described in
Table 5.1. At high liquid-gas ratios, the liquid forms the continuous phase and at low
values it forms the disperse phase. In the intervening region, there is generally some
instability; and sometimes several flow regimes are lumped together. In plug flow and
slug flow, the gas is flowing faster than the liquid and liquid from a slug tends to become
detached, to move as a relatively slow moving film along the surface of the pipe and
then to be reaccelerated when the next liquid slug catches it up. This process can account
for a significant proportion of the total energy losses. Particularly in short pipelines, the
flow develops an oscillating pattern arising largely from discontinuities associated with
the expulsion of successive liquid slugs.
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Figure 5.1.  Flow patterns in two-phase flow
Table 5.1. Flow regimes in horizontal two-phase flow
Typical velocities (m/s)
Regime Description Liquid Vapour
{. Bubble flow™ Bubbles of gas dispersed throughout the liquid 1.5-5 0.3-3
2. Plug flow® Plugs of gas in liquid phase 0.6 <1.0
3. Swratified flow Layer of liquid with a layer of gas above <0.15 0.6-3
4. Wavy flow As stratified but with a wavy interface due to
higher velocities <0.3 =5
5. Slug flow® Slug of gas in liquid phase Occurs over a wide
range of velocities
6. Annular flow'™ Liquid film on inside walls with gas in centre =6
7. Mist flow™® Liquid droplets dispersed in gas >60

4 Frequently grouped together as intermittent flow
) Sometimes grouped as annular/mist flow

The regions over which the different types of flow can occur are conveniently shown
on a “Flow Pattern Map” in which a function of the gas flowrate is plotted against a
function of the liquid flowrate and boundary lines are drawn to delineate the ‘various
regions. It should be borne in mind that the distinction between any two flow patterns
is not clear-cut and that these divisions are only approximate as each flow regime tends
to merge in with its neighbours; in any case, the whole classification is based on highly
subjective observations. Several workers have produced their own maps“ ™%,

Most of the data used for compiling such maps have been obtained for the flow of
water and air at near atmospheric temperature and pressure, and scaling factors have been
introduced to extend their applicability to other systems. However, bearing in mind the
diffuse nature of the boundaries between the regimes and the relatively minor effect of
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changes in physical properties, such a refinement does not appear to be justified. The
flow pattern map for horizontal flow illustrated in Figure 5.2 which has been prepared
by CHHABRA and RICHARDSON®’ is based on those previously presented by MANDHANE
et al.® and WEISMAN et al.)) The axes of this diagram are superficial liquid velocity u;,
and superficial gas velocity ug (in each case the volumetric flowrate of the phase divided
by the total cross-sectional area of the pipe).
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Figure 5.2. Flow pattern map

Slug flow should be avoided when it is necessary to obviate unsteady conditions. and it
is desirable to design so that annular flow still persists at loadings down to 50 per cent of
the normal flow rates. Even though in many applications both phases should be turbulent;
excessive gas velocity will lead to a high pressure drop, particularly in small pipes.

Although most of the data relate to flow in pipes of small diameters (<42 mm), results
of experiments carried out in a 205 mm pipe fit well on the diagram. The flow pattern
map, shown in Figure 5.2, also gives a good representation of results obtained for the
flow of mixtures of gas and shear-thinning non-Newtonian liquids, including very highly
shear-thinning suspensions (power law index n = 0.1) and viscoelastic polymer solutions.

Vertical flow

In vertical flow, axial symmetry exists and flow patterns tend to be somewhat more stable.
However, with slug flow in particular, oscillations in the flow can occur as a result of
sudden changes in pressure as liquid slugs are discharged from the end of the pipe.

The principal flow patterns are shown in Figure 5.1. In general, the flow pattern map
(Figure 5.2) is also applicable to vertical flow. Further reference to flow of gas-liquid
mixtures in vertical pipes is made in Section 8.4.1 with reference to the operation of the
air-lift pump.
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5.2.3. Hold-up

Because the gas always flows at a velocity greater than that of the liquid, the in situ
volumetric fraction of liquid at any point in a pipeline will be greater than the input
volume fraction of liquid; furthermore it will progressively change along the length of
the pipe as a result of expansion of the gas.

There have been several experimental studies of two-phase flow in which the hold-
up has been measured, either directly or indirectly. The direct method of measurement
involves suddenly isolating a section of the pipe by means of quick-acting valves and
then determining the quantity of liquid trapped.”'*'" Such methods are cumbersome and
are subject to errors arising from the fact that the valves cannot operate instantaneously.
Typical of the indirect methods is that in which the pipe cross-section is scanned by y-rays
and the hold-up is determined from the extent of their attenuation,(!%13.14)

LOCKHART and MARTINELLI'® expressed hold-up in terms of a parameter X, charac-
teristic of the relative flowrates of liquid and gas, defined as:

—AP, \
X =4/ —— (5.1}
—APg

where —AP; and — AP are the frictional pressure drops which would arise from the flow
of the respective phases on their own at the same rates. Their correlation is reproduced in
Figure 5.3. As a result of more recent work it is now generally accepted that the correlation
overpredicts values of liquid hold-up. Thus FAROOQI and RICHARDSON!!®), the results of
whose work are also shown in Figure 5.3, have given the following expression for liquid
hold-up €, for co-current flow of air and Newtonian liquids in horizontal pipes:
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It should be noted that, for turbulent flow of each phase, pressure drop is approximately
proportional to the square of velocity and X is then equal to the ratio of the superficial
velocities of the liquid and gas.

Equation 5.2 is found to hold well for non-Newtonian shear-thinning suspensions as
well, provided that the liquid flow is turbulent. However, for laminar flow of the liquid,
equation 5.2 considerably overpredicts the liquid hold-up €. The extent of overprediction
increases as the degree of shear-thinning increases and as the liquid Reynolds number
becomes progressively less. A modified parameter X’ has therefore been defined!®!”’ for
a power-law fluid (Chapter 3) in such a way that it reduces to X both at the superficial
velocity uy equal to the transitional velocity (uy). from streamline to turbulent flow and
when the liquid exhibits Newtonian properties. The parameter X’ is defined by the relation

I—n
X =X (Jff;) (5.3)
(uL)c

where n is the power-law index. It will be seen that the correction factor becomes progres-
sively more important as n deviates from unity and as the velocity deviates from the
critical velocity. Equation 5.2 may then be applied provided X’ is used in place of X in
the equation.

Thus, in summary, liquid hold-up can be calculated using equation 5.2 for:

Newtonian fluids in laminar or turbulent flow.
Non-Newtonian fluids in turbulent flow only.

Equation 5.2, with the modified parameter X’ used in place of X, may be used for
laminar flow of shear-thinning fluids whose behaviour can be described by the power-law
model.

A knowledge of hold-up is particularly important for vertical flow since the hydrostatic
pressure gradient, which is frequently the major component of the total pressure gradient,
is directly proportional to liquid hold-up. However, in slug flow, the situation is compli-
cated by the fact that any liquid which is in the form of an annular film surrounding the
gas slug does not contribute to the hydrostatic pressure'®.

5.2.4. Pressure, momentum, and energy relations

Methods for determining the drop in pressure start with a physical model of the two-phase
system, and the analysis is developed as an extension of that used for single-phase flow.
In the separated flow model the phases are first considered to flow separately; and their
combined effect is then examined.

The total pressure gradient in a horizontal pipe, (—dPrpg/dl), consists of two compo-
nents which represent the frictional and the acceleration pressure gradients respectively,
or:

—dPrpr _ —dPy N --dP, (5.4)

d/ di dl
A momentum balance for the flow of a two-phase fluid through a horizontal pipe and an
energy balance may be written in an expanded form of that applicable to single-phase fluid
flow. These equations for two-phase flow cannot be used in practice since the individual
phase velocities and local densities are not known. Some simplification is possible if it
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is assumed that the two phases flow separately in the channel occupying fixed fractions
of the total area, but even with this assumption of separated flow regimes, progress is
difficult. It is important to note that, as in the case of single-phase flow of a compressible
fluid, it is no longer possible to relate the shear stress to the pressure drop in a simple
form since the pressure drop now covers both frictional and acceleration losses. The shear
at the wall is proportional to the total rate of momentum transfer, arising from friction
and acceleration, so that the total drop in pressure —APypp is given by:

—~APrpp = (=AP;) + (—AP,) (5.5)

The pressure drop due to acceleration is important in two-phase flow because the gas
is normally flowing much faster than the liquid, and therefore as it expands the liquid
phase will accelerate with consequent transfer of energy. For flow in a vertical direction,
an additional term — APy, must be added to the right hand side of equation 5.5 to
account for the hydrostatic pressure attributable to the liquid in the pipe, and this may be
calculated approximately provided that the liquid hold-up is known.

Analytical solutions for the equations of motion are not possible because of the difficulty
of specifying the flow pattern and of defining the precise nature of the interaction between
the phases. Rapid fluctuations in flow frequently occur and these cannot readily be taken
into account. For these reasons, it is necessary for design purposes to use correlations
which have been obtained using experimental data. Great care should be taken, however,
if these are used outside the limits used in the experimental work.

Practical methods for evaluating pressure drop

Probably the most widely used method for estimating the drop in pressure due to friction
is that proposed by LOCKHART and MARTINELLI("® and later modified by CHISHOLM!'®),
This is based on the physical model of separated flow in which each phase is considered
separately and then a combined effect formulated. The two-phase pressure drop due to
friction ~ APypg is taken as the pressure drop — AP, or — AP that would arise for either
phase flowing alone in the pipe at the stated rate, multiplied by some factor ®7 or ®Z.
This factor is presented as a function of the ratio of the individual single-phase pressure
drops and:

—APrpr

.__X}l).fﬁ. = P2 (5.6)
—~APg

—~APrpr 2 :

= = P 5.7
—AP, t oD

The relation between ®; and &, and X (defined by equation 5.1) is shown in
Figure 5.4, where it is seen that separate curves are given according to the nature of
the flow of the two phases. This relation was developed from studies on the flow in small
tubes of up to 25 mm diameter with water, oils, and hydrocarbons using air at a pressure
of up to 400 kN/m?. For mass flowrates per unit area of L’ and G’ for the liquid and gas,
respectively, Reynolds numbers Re; (L'd/u;) and Reg(G'd/ i) may be used as criteria
for defining the flow regime; values less than 1000 to 2000, however, do not necessarily
imply that the fluid is in truly laminar flow. Later experimental work showed that the
total pressure has an influence and data presented by GRIFFITH'® may be consulted where
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Figure 5.4. Relation between ® and X for two-phase flow

pressures are in excess of 3 MN/m?. CHISHOLM'® has developed a relation between @,
and X which he puts in the form:

¢ I ..
X + X2 {(5.8)
where ¢ has a value of 20 for turbulent/turbulent flow, 10 for turbulent liquid/streamline
gas, 12 for streamline liquid/turbulent gas, and 5 for streamline/streamline flow. If the
densities of the fluids are significantly different from those of water and air at atmospheric
temperature and pressure, the values of ¢ are somewhat modified.

CHENOWETH and MARTIN®*2D) have presented an alternative method for calculating
the drop in pressure, which is empirical and based on experiments with pipes of 75 mm
and pressures up to 0.7 MN/m?. They have plotted the volume fraction of the inlet stream
that is liquid as abscissa against the ratio of the two-phase pressure drop to that for liquid
flowing at the same volumetric rate as the mixture. An alternative technique has been
described by BAROCZY??). If heat transfer gives rise to evaporation then reference should
be made to work by DUKLER et al®®.

An illustration of the method of calculation of two-phase pressure drop is included here
as Example 5.1.

O =1+

Critical flow

For the flow of a compressible fluid, conditions of sonic velocity may be reached, thus
limiting the maximum flowrate for a given upstream pressure. This situation can also
occur with two-phase flow, and such critical velocities may sometimes be reached with a
drop in pressure of only 30 per cent of the inlet pressure.



